scholarly journals Estimation of S-Wave Velocity Structure Model by Joint Inversion of Site Amplification Factor and Receiver Function

2014 ◽  
Vol 14 (5) ◽  
pp. 5_31-5_49
Author(s):  
Hiroyuki MIURA ◽  
Ryosuke MANABE ◽  
Tatsuo KANNO ◽  
Tetsuo ABIRU
2020 ◽  
Vol 110 (6) ◽  
pp. 2892-2911
Author(s):  
Eri Ito ◽  
Kenichi Nakano ◽  
Fumiaki Nagashima ◽  
Hiroshi Kawase

ABSTRACT The main purpose of the site classification or velocity determination at a target site is to obtain or estimate the horizontal site amplification factor (HSAF) at that site during future earthquakes because HSAF would have significant effects on the strong-motion characteristics. We have been investigating various kinds of methods to delineate the S-wave velocity structures and the subsequent HSAF, as precisely as possible. After the advent of the diffuse field concept, we have derived a simple formula based on the equipartitioned energy density observed in the layered half-space for incident body waves. In this study, based on the diffuse field concept, together with the generalized spectral inversion technique (GIT), we propose a method to directly estimate the HSAF of the S-wave portion from the horizontal-to-vertical spectral ratio of earthquakes (eHVSRs). Because the vertical amplification is included in the denominator of eHVSR, it cannot be viewed as HSAF without correction. We used GIT to determine both the HSAF and the vertical site amplification factor (VSAF) simultaneously from strong-motion data observed by the networks in Japan and then deduced the log-averaged vertical amplification correction function (VACF) from VSAFs at a total of 1678 sites in which 10 or more earthquakes have been observed. The VACF without a category has a constant amplitude of about 2 in the frequency range from 1 to 15 Hz. By multiplying eHVSR by VACF, we obtained the simulated HSAF. We verified the effectiveness of this correction method using data from observation sites not used in the aforementioned averaging in the frequency range from 0.12 to 15 Hz.


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. KS11-KS22 ◽  
Author(s):  
Nicola Piana Agostinetti ◽  
Alberto Malinverno

We use teleseismic P-to-S converted waves from a permanent station to estimate the uncertainties in a 1D elastic model of the shallow crust (0–7 km depth) obtained from the inversion of receiver function (RF) data. Our earth model consists of layers with a constant S-wave velocity [Formula: see text] and P- to S-wave velocity ratio ([Formula: see text]). We apply a Bayesian formulation and transdimensional Monte Carlo sampling to compute the posterior uncertainties of the earth model. The model uncertainties rely on a realistic representation of the data uncertainties, and we estimate directly from the stacking of the teleseismic data, a full-error covariance matrix. To explore the effect of the number of teleseismic events and the RF frequency content, we compare the results of inverting a single RF computed for a cut-off filter frequency of 4 Hz with the joint inversion of four RFs computed from independent ensembles in a larger pool of events for cut-off frequencies of 0.5, 1, 2, and 4 Hz. The inversion results are compared with the lithostratigraphy and sonic-log measurements from a 7 km deep borehole drilled near the seismic station. The inversion of a single RF results in larger uncertainties in the recovered [Formula: see text] profile and in the depth to seismic discontinuities compared with the multifrequency inversion. Moreover, the multifrequency inversion predicts more accurately the depth to a velocity inversion at approximately 6 km below the surface and matches more closely the borehole sonic-log data. Our results indicate that RF data can be used to map shallow (3–5 km depth) crustal interfaces with uncertainties in the order of 300–500 m, whereas uncertainties are consistently smaller (<300 m) for interfaces in the top kilometer.


2014 ◽  
Vol 9 (6) ◽  
pp. 931-938 ◽  
Author(s):  
Selene Quispe ◽  
◽  
Kosuke Chimoto ◽  
Hiroaki Yamanaka ◽  
Hernando Tavera ◽  
...  

Microtremor exploration was performed around seismic recording stations at five sites in Lima city, Peru in order to know the site amplification at these sites. The Spatial Autocorrelation (SPAC) method was applied to determine the observed phase velocity dispersion curve, which was subsequently inverted in order to estimate the 1-D S-wave velocity structure. From these results, the theoretical amplification factor was calculated to evaluate the site effect at each site. S-wave velocity profiles at alluvial gravel sites have S-wave velocities ranging from ∼500 to ∼1500 m/s which gradually increase with depth, while Vs profiles at sites located on fine alluvial material such as sand and silt have Swave velocities that vary between ∼200 and ∼500 m/s. The site responses of all Vs profiles show relatively high amplification levels at frequencies larger than 3 Hz. The average transfer function was calculated to make a comparison with values within the existing amplification map of Lima city. These calculations agreed with the proposed site amplification ranges.


2019 ◽  
Author(s):  
Takayuki Kobayashi ◽  
Takanori Ogahara ◽  
Tomio Inazaki ◽  
Hiroshi Kisanuki ◽  
Chisato Konishi ◽  
...  

2014 ◽  
Vol 51 (4) ◽  
pp. 407-417 ◽  
Author(s):  
H.S. Kim ◽  
J.F. Cassidy ◽  
S.E. Dosso ◽  
H. Kao

This paper presents results of a passive-source seismic mapping study in the Nechako–Chilcotin plateau of central British Columbia, with the ultimate goal of contributing to assessments of hydrocarbon and mineral potential of the region. For the present study, an array of nine seismic stations was deployed in 2006–2007 to sample a wide area of the Nechako–Chilcotin plateau. The specific goal was to map the thickness of the sediments and volcanic cover, and the overall crustal thickness and structural geometry beneath the study area. This study utilizes recordings of about 40 distant earthquakes from 2006 to 2008 to calculate receiver functions, and constructs S-wave velocity models for each station using the Neighbourhood Algorithm inversion. The surface sediments are found to range in thickness from about 0.8 to 2.7 km, and the underlying volcanic layer from 1.8 to 4.7 km. Both sediments and volcanic cover are thickest in the central portion of the study area. The crustal thickness ranges from 22 to 36 km, with an average crustal thickness of about 30–34 km. A consistent feature observed in this study is a low-velocity zone at the base of the crust. This study complements other recent studies in this area, including active-source seismic studies and magnetotelluric measurements, by providing site-specific images of the crustal structure down to the Moho and detailed constraints on the S-wave velocity structure.


2006 ◽  
Vol 49 (5) ◽  
pp. 1245-1254 ◽  
Author(s):  
Yong-Hua LI ◽  
Qing-Ju WU ◽  
Zhang-Hui AN ◽  
Xiao-Bo TIAN ◽  
Rong-Sheng ZENG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document