scholarly journals A note on the Ramsey number for cycle with respect to multiple copies of wheels

2021 ◽  
Vol 9 (2) ◽  
pp. 561
Author(s):  
I Wayan Sudarsana
Author(s):  
O. H. Kapp ◽  
M. Ohtsuki ◽  
N. Robin ◽  
S. N. Vinogradov ◽  
A. V. Crewe

Annelid extracellular hemoglobins are among the largest known proteins (M.W = 3.9 x 106), and together with the hemocyanins are the largest known oxygen carriers. They display oxygen affinities generally higher than those o vertebrate hemoglobins with Hill coefficients ranging from slightly higher than unity to values as high as 5-6. These complex molecules are composed of multiple copies of as many as six different polypeptides and posse: approximately 150 hemes per molecule.The samples were diluted to 100-200 μg/ml with distilled water just before application to a thin carbon film (∽15 Å thick). One percent (w/v) uranyl acetate solution was used for negative staining for 2 minutes and dried in air. The specimens were examined with the high resolution STEM. Their general appearance is that of a hexagonal bilayer (Fig. 1), each layer consisting of six spheroidal subunits. The corner to corner hexagonal dimensic is approximately 300 Å and the bilayer thickness approximately 200 Å.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 331-339 ◽  
Author(s):  
Y Horiuchi ◽  
H Kawaguchi ◽  
F Figueroa ◽  
C O'hUigin ◽  
J Klein

Abstract C4 and CYP21 are two adjacent, but functionally unrelated genes residing in the middle of the mammalian major histocompatibility complex (Mhc). The C4 gene codes for the fourth component of the complement cascade, whereas the CYP21 gene specifies an enzyme (cytochrome P450c21) of the glucocorticoid and mineralocorticoid pathways. The genes occur frequently in multiple copies on a single chromosome arranged in the order C4 ... CYP21 ... C4 ... CYP21. The unit of duplication (a module) is the C4-CYP21 gene pair. We sequenced the flanking regions of the C4-CYP21 modules and the intermodular regions of the chimpanzee, gorilla, and orangutan, as well as the intermodular region of an Old World monkey, the pigtail macaque. By aligning the sequences, we could identify the duplication breakpoints in these species. The breakpoint turned out to be at exactly the same position as that found previously in humans. The sequences flanking paralogous genes in the same species were found to be more similar to one another than sequences flanking orthologous genes in different species. We interpret these results as indicating that the original (primigenial) duplication occurred before the separation of apes from Old World monkeys more than 23 million years ago. The nature of the sequence at the breakpoint suggests that the duplication occurred by nonhomologous recombination. Since then, the C4-CYP21 haplotypes have been expanding and contracting by homologous crossing over which has homogenized the sequences in each species.(ABSTRACT TRUNCATED AT 250 WORDS)


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Katharina Kawall

Abstract‘Genome editing’ is intended to accelerate modern plant breeding enabling a much faster and more efficient development of crops with improved traits such as increased yield, altered nutritional composition, as well as resistance to factors of biotic and abiotic stress. These traits are often generated by site-directed nuclease-1 (SDN-1) applications that induce small, targeted changes in the plant genomes. These intended alterations can be combined in a way to generate plants with genomes that are altered on a larger scale than it is possible with conventional breeding techniques. The power and the potential of genome editing comes from its highly effective mode of action being able to generate different allelic combinations of genes, creating, at its most efficient, homozygous gene knockouts. Additionally, multiple copies of functional genes can be targeted all at once. This is especially relevant in polyploid plants such as Camelina sativa which contain complex genomes with multiple chromosome sets. Intended alterations induced by genome editing have potential to unintentionally alter the composition of a plant and/or interfere with its metabolism, e.g., with the biosynthesis of secondary metabolites such as phytohormones or other biomolecules. This could affect diverse defense mechanisms and inter-/intra-specific communication of plants having a direct impact on associated ecosystems. This review focuses on the intended alterations in crops mediated by SDN-1 applications, the generation of novel genotypes and the ecological effects emerging from these intended alterations. Genome editing applications in C. sativa are used to exemplify these issues in a crop with a complex genome. C. sativa is mainly altered in its fatty acid biosynthesis and used as an oilseed crop to produce biofuels.


2021 ◽  
Vol 344 (5) ◽  
pp. 112320
Author(s):  
Imre Hatala ◽  
Tamás Héger ◽  
Sam Mattheus
Keyword(s):  

2021 ◽  
Vol 344 (5) ◽  
pp. 112322
Author(s):  
Deepak Bal ◽  
Ely Schudrich
Keyword(s):  

Genetics ◽  
2001 ◽  
Vol 159 (3) ◽  
pp. 1103-1115 ◽  
Author(s):  
Hongguang Shao ◽  
Zhijian Tu

Abstract A novel transposon named ITmD37E was discovered in a wide range of mosquito species. Sequence analysis of multiple copies in three Aedes species showed similar terminal inverted repeats and common putative TA target site duplications. The ITmD37E transposases contain a conserved DD37E catalytic motif, which is unique among reported transposons of the IS630-Tc1-mariner superfamily. Sequence comparisons and phylogenetic analyses suggest that ITmD37E forms a novel family distinct from the widely distributed Tc1 (DD34E), mariner (DD34D), and pogo (DDxD) families in the IS630-Tc1-mariner superfamily. The inclusion in the phylogenetic analysis of recently reported transposons and transposons uncovered in our database survey provided revisions to previous classifications and identified two additional families, ITmD37D and ITmD39D, which contain DD37D and DD39D motifs, respectively. The above expansion and reorganization may open the doors to the discovery of related transposons in a broad range of organisms and help illustrate the evolution and structure-function relationships among these distinct transposases in the IS630-Tc1-mariner superfamily. The presence of intact open reading frames and highly similar copies in some of the newly characterized transposons suggests recent transposition. Studies of these novel families may add to the limited repertoire of transgenesis and mutagenesis tools for a wide range of organisms, including the medically important mosquitoes.


2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.


1987 ◽  
Vol 208 (1-2) ◽  
pp. 127-134 ◽  
Author(s):  
S. M. Baker ◽  
S. A. Johnston ◽  
J. E. Hopper ◽  
J. A. Jaehning

Sign in / Sign up

Export Citation Format

Share Document