scholarly journals Annotation of Using Borehole Time-Lapse Gravity by Genetic Algorithm Inversion for Subsurface Modeling

Author(s):  
Indra Gunawan ◽  
Eko Januari Wahyudi ◽  
Susanti Alawiyah ◽  
Wawan Gunawan Abdul Kadir ◽  
Umar Fauzi
Author(s):  
Shefali Gandhi ◽  
Tushar V. Ratanpara

Video synopsis provides representation of the long surveillance video, while preserving the essential activities of the original video. The activity in the original video is covered into a shorter period by simultaneously displaying multiple activities, which originally occurred at different time segments. As activities are to be displayed in different time segments than original video, the process begins with extracting moving objects. Temporal median algorithm is used to model background and foreground objects are detected using background subtraction method. Each moving object is represented as a space-time activity tube in the video. The concept of genetic algorithm is used for optimized temporal shifting of activity tubes. The temporal arrangement of tubes which results in minimum collision and maintains chronological order of events is considered as the best solution. The time-lapse background video is generated next, which is used as background for the synopsis video. Finally, the activity tubes are stitched on the time-lapse background video using Poisson image editing.


Author(s):  
Eko Januari Wahyudi ◽  
◽  
Djoko Santoso ◽  
Wawan Gunawan Abdul Kadir ◽  
Susanti Alawiyah

Author(s):  
Shefali Gandhi ◽  
Tushar V. Ratanpara

Video synopsis provides representation of the long surveillance video, while preserving the essential activities of the original video. The activity in the original video is covered into a shorter period by simultaneously displaying multiple activities, which originally occurred at different time segments. As activities are to be displayed in different time segments than original video, the process begins with extracting moving objects. Temporal median algorithm is used to model background and foreground objects are detected using background subtraction method. Each moving object is represented as a space-time activity tube in the video. The concept of genetic algorithm is used for optimized temporal shifting of activity tubes. The temporal arrangement of tubes which results in minimum collision and maintains chronological order of events is considered as the best solution. The time-lapse background video is generated next, which is used as background for the synopsis video. Finally, the activity tubes are stitched on the time-lapse background video using Poisson image editing.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. I55-I65 ◽  
Author(s):  
Richard A. Krahenbuhl ◽  
Yaoguo Li

We have developed a hybrid optimization algorithm for binary inversion of geophysical data associated with lithologic inversion and time-lapse monitoring. The binary condition is designed to invert geophysical data for well-defined physical properties within discrete lithologic units, such as a salt body within a sedimentary host, or temporal changes in physical property associated with dynamic processes, such as the density and conductivity change in an oil and gas reservoir or groundwater aquifer. The solution of such inverse problems with discrete model values requires specialized optimization algorithms. To meet this need, we develop a hybrid optimization algorithm by combining a genetic algorithm with quenched simulated annealing. The former allows for easy incorporation of prior geologic information and rapid buildup of large-scale model features, whereas the latter guides genetic algorithm to faster evolution by rapidly adjusting the finer model features. In examining the performance of the hybrid algorithm, we note its superior performance. Our investigations of the algorithm’s capability with a 3D gravity inversion for the SEG/EAGE salt model and a time-lapse gravity data set from an aquifer storage and recovery process reveal its benefits.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1158
Author(s):  
Rezzy Eko Caraka ◽  
Hasbi Yasin ◽  
Rung-Ching Chen ◽  
Noor Ell Goldameir ◽  
Budi Darmawan Supatmanto ◽  
...  

Design: At the heart of time series forecasting, if nonlinear and nonstationary data are analyzed using traditional time series, the results will be biased. At the same time, if just using machine learning without any consideration given to input from traditional time series, not much information can be obtained from the results because the machine learning model is a black box. Purpose: In order to better study time series forecasting, we extend the combination of traditional time series and machine learning and propose a hybrid cascade neural network considering a metaheuristic optimization genetic algorithm in space–time forecasting. Finding: To further show the utility of the cascade neural network genetic algorithm, we use various scenarios for training and testing while also extending simulations by considering the activation functions SoftMax, radbas, logsig, and tribas on space–time forecasting of pollution data. During the simulation, we perform numerical metric evaluations using the root-mean-square error (RMSE), mean absolute error (MAE), and symmetric mean absolute percentage error (sMAPE) to demonstrate that our models provide high accuracy and speed up time-lapse computing.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
J.N. Turner ◽  
W.G. Shain ◽  
V. Madelian ◽  
R.A. Grassucci ◽  
D.L. Forman

Homogeneous cultures of astroglial cells have proved useful for studying biochemical, pharmacological, and toxicological responses of astrocytes to effectors of central nervous system function. LRM 55 astroglial cells, which were derived from a rat glioma and maintained in continuous culture, exhibit a number of astrocyte properties (1-3). Stimulation of LRM 55s and astrocytes in primary cell cultures with the beta-adrenergic agonist isoproterenol results in rapid changes of morphology. Studies with time lapse video light microscopy (VLM) and high-voltage electron microscopy (HVEM) have been correlated to changes in intracellular levels of c-AMP. This report emphasizes the HVEM results.


Author(s):  
R H. Selinfreund ◽  
A. H. Cornell-Bell

Cellular electrophysiological properties are normally monitored by standard patch clamp techniques . The combination of membrane potential dyes with time-lapse laser confocal microscopy provides a more direct, least destructive rapid method for monitoring changes in neuronal electrical activity. Using membrane potential dyes we found that spontaneous action potential firing can be detected using time-lapse confocal microscopy. Initially, patch clamp recording techniques were used to verify spontaneous electrical activity in GH4\C1 pituitary cells. It was found that serum depleted cells had reduced spontaneous electrical activity. Brief exposure to the serum derived growth factor, IGF-1, reconstituted electrical activity. We have examined the possibility of developing a rapid fluorescent assay to measure neuronal activity using membrane potential dyes. This neuronal regeneration assay has been adapted to run on a confocal microscope. Quantitative fluorescence is then used to measure a compounds ability to regenerate neuronal firing.The membrane potential dye di-8-ANEPPS was selected for these experiments. Di-8- ANEPPS is internalized slowly, has a high signal to noise ratio (40:1), has a linear fluorescent response to change in voltage.


Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


Sign in / Sign up

Export Citation Format

Share Document