Combinations of Text Preprocessing and Word Embedding Suitable for Neural Network Models for Document Classification

2018 ◽  
Vol 45 (7) ◽  
pp. 690-700 ◽  
Author(s):  
Yeongsu Kim ◽  
Seungwoo Lee
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jianming Zheng ◽  
Yupu Guo ◽  
Chong Feng ◽  
Honghui Chen

Document representation is widely used in practical application, for example, sentiment classification, text retrieval, and text classification. Previous work is mainly based on the statistics and the neural networks, which suffer from data sparsity and model interpretability, respectively. In this paper, we propose a general framework for document representation with a hierarchical architecture. In particular, we incorporate the hierarchical architecture into three traditional neural-network models for document representation, resulting in three hierarchical neural representation models for document classification, that is, TextHFT, TextHRNN, and TextHCNN. Our comprehensive experimental results on two public datasets, that is, Yelp 2016 and Amazon Reviews (Electronics), show that our proposals with hierarchical architecture outperform the corresponding neural-network models for document classification, resulting in a significant improvement ranging from 4.65% to 35.08% in terms of accuracy with a comparable (or substantially less) expense of time consumption. In addition, we find that the long documents benefit more from the hierarchical architecture than the short ones as the improvement in terms of accuracy on long documents is greater than that on short documents.


2020 ◽  
Vol 10 (21) ◽  
pp. 7557
Author(s):  
Chirawan Ronran ◽  
Seungwoo Lee ◽  
Hong Jun Jang

Named Entity Recognition (NER) plays a vital role in natural language processing (NLP). Currently, deep neural network models have achieved significant success in NER. Recent advances in NER systems have introduced various feature selections to identify appropriate representations and handle Out-Of-the-Vocabulary (OOV) words. After selecting the features, they are all concatenated at the embedding layer before being fed into a model to label the input sequences. However, when concatenating the features, information collisions may occur and this would cause the limitation or degradation of the performance. To overcome the information collisions, some works tried to directly connect some features to latter layers, which we call the delayed combination and show its effectiveness by comparing it to the early combination. As feature encodings for input, we selected the character-level Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM) word encoding, the pre-trained word embedding, and the contextual word embedding and additionally designed CNN-based sentence encoding using a dictionary. These feature encodings are combined at early or delayed position of the bidirectional LSTM Conditional Random Field (CRF) model according to each feature’s characteristics. We evaluated the performance of this model on the CoNLL 2003 and OntoNotes 5.0 datasets using the F1 score and compared the delayed combination model with our own implementation of the early combination as well as the previous works. This comparison convinces us that our delayed combination is more effective than the early one and also highly competitive.


2020 ◽  
Vol 5 ◽  
pp. 140-147 ◽  
Author(s):  
T.N. Aleksandrova ◽  
◽  
E.K. Ushakov ◽  
A.V. Orlova ◽  
◽  
...  

The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4242
Author(s):  
Fausto Valencia ◽  
Hugo Arcos ◽  
Franklin Quilumba

The purpose of this research is the evaluation of artificial neural network models in the prediction of stresses in a 400 MVA power transformer winding conductor caused by the circulation of fault currents. The models were compared considering the training, validation, and test data errors’ behavior. Different combinations of hyperparameters were analyzed based on the variation of architectures, optimizers, and activation functions. The data for the process was created from finite element simulations performed in the FEMM software. The design of the Artificial Neural Network was performed using the Keras framework. As a result, a model with one hidden layer was the best suited architecture for the problem at hand, with the optimizer Adam and the activation function ReLU. The final Artificial Neural Network model predictions were compared with the Finite Element Method results, showing good agreement but with a much shorter solution time.


2021 ◽  
Vol 11 (3) ◽  
pp. 908
Author(s):  
Jie Zeng ◽  
Panagiotis G. Asteris ◽  
Anna P. Mamou ◽  
Ahmed Salih Mohammed ◽  
Emmanuil A. Golias ◽  
...  

Buried pipes are extensively used for oil transportation from offshore platforms. Under unfavorable loading combinations, the pipe’s uplift resistance may be exceeded, which may result in excessive deformations and significant disruptions. This paper presents findings from a series of small-scale tests performed on pipes buried in geogrid-reinforced sands, with the measured peak uplift resistance being used to calibrate advanced numerical models employing neural networks. Multilayer perceptron (MLP) and Radial Basis Function (RBF) primary structure types have been used to train two neural network models, which were then further developed using bagging and boosting ensemble techniques. Correlation coefficients in excess of 0.954 between the measured and predicted peak uplift resistance have been achieved. The results show that the design of pipelines can be significantly improved using the proposed novel, reliable and robust soft computing models.


Sign in / Sign up

Export Citation Format

Share Document