scholarly journals Effect of Glyceric Acid Calcium Salt on the Viability of Ethanol-Dosed Gastric Cells

2011 ◽  
Vol 60 (11) ◽  
pp. 585-590 ◽  
Author(s):  
Hiroshi Habe ◽  
Shun Sato ◽  
Tokuma Fukuoka ◽  
Dai Kitamoto ◽  
Keiji Sakaki
Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
M Merlani ◽  
V Barbakadze ◽  
L Gogilashvili ◽  
L Amiranashvili ◽  
K Mulkijanyan ◽  
...  

2012 ◽  
Vol 96 (5) ◽  
pp. 1243-1252 ◽  
Author(s):  
Sandra Gerstenbruch ◽  
Hauke Wulf ◽  
Nina Mußmann ◽  
Timothy O’Connell ◽  
Karl-Heinz Maurer ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1518
Author(s):  
Keun-Yeong Jeong ◽  
Jae-Jun Sim ◽  
Min Hee Park ◽  
Hwan Mook Kim

Hypoxic cancer cells meet their growing energy requirements by upregulating glycolysis, resulting in increased glucose consumption and lactate production. Herein, we used a unique approach to change in anaerobic glycolysis of cancer cells by lactate calcium salt (CaLac). Human colorectal cancer (CRC) cells were used for the study. Intracellular calcium and lactate influx was confirmed following 2.5 mM CaLac treatment. The enzymatic activation of lactate dehydrogenase B (LDHB) and pyruvate dehydrogenase (PDH) through substrate reaction of CaLac was investigated. Changes in the intermediates of the tricarboxylic acid (TCA) cycle were confirmed. The cell viability assay, tube formation, and wound-healing assay were performed as well as the confirmation of the expression of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). In vivo antitumor effects were evaluated using heterotopic and metastatic xenograft animal models with 20 mg/kg CaLac administration. Intracellular calcium and lactate levels were increased following CaLac treatment in CRC cells under hypoxia. Then, enzymatic activation of LDHB and PDH were increased. Upon PDH knockdown, α-ketoglutarate levels were similar between CaLac-treated and untreated cells, indicating that TCA cycle restoration was dependent on CaLac-mediated LDHB and PDH reactivation. CaLac-mediated remodeling of cancer-specific anaerobic glycolysis induced destabilization of HIF-1α and a decrease in VEGF expression, leading to the inhibition of the migration of CRC cells. The significant inhibition of CRC growth and liver metastasis by CaLac administration was confirmed. Our study highlights the potential utility of CaLac supplementation in CRC patients who display reduced therapeutic responses to conventional modes owing to the hypoxic tumor microenvironment.


1984 ◽  
Vol 52 (1) ◽  
pp. 54-73 ◽  
Author(s):  
D. F. Russell ◽  
D. K. Hartline

The properties of neurons in the stomatogastric ganglion (STG) participating in the pattern generator for the gastric mill rhythm were studied by intracellular current injection under several conditions: during ongoing gastric rhythms, in the nonrhythmic isolated STG, after stimulation of the nerve carrying central nervous system (CNS) inputs to the STG, or under Ba2+ or Sr2+. Slow regenerative depolarizations during ongoing rhythms were demonstrated in the anterior median, cardiopyloric, lateral cardiac, gastropyloric, and continuous inhibitor (AM, CP, LC, GP, and CI) neurons according to criteria such as voltage dependency, burst triggering, and termination by brief current pulses, etc. Experiments showed that regenerative-like behavior was not due to synaptic network interactions. The slow regenerative responses were abolished by isolating the stomatogastric ganglion but could be reestablished by stimulating the input nerve. This indicates that certain CNS inputs synaptically induce the regenerative property in specific gastric neurons. Slow regenerative depolarizations were not demonstrable in gastric mill (GM) motor neurons. Their burst oscillations and firing rate were instead proportional to injected current. CNS inputs evoked a prolonged depolarization in GM motor neurons, apparently by a nonregenerative mechanism. All the gastric cells showed prolonged regenerative potentials under 0.5-1.5 mM Ba2+. We conclude that the gastric neurons of the STG can be divided into three types according to their properties: those with a regenerative capability, a repetitively firing type, and a nonregenerative "proportional" type. The cells are strongly influenced by several types of CNS inputs, including "gastric command fibers."


ChemInform ◽  
2010 ◽  
Vol 32 (28) ◽  
pp. no-no
Author(s):  
Mikiko Sodeoka ◽  
Ruriko Sampe ◽  
Sachiko Kojima ◽  
Yoshiyasu Baba ◽  
Naoko Morisaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document