scholarly journals Three-Dimensional Dynamics of Freshwater Lenses in the Ocean’s Near-Surface Layer

Oceanography ◽  
2015 ◽  
Vol 28 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Alexander Soloviev ◽  
◽  
Silvia Matt ◽  
Atsushi Fujimara

Abstract The Namib Turbulence EXperiment (NamTEX) was a multi-national micrometeorological campaign conducted in the Central Namib Desert to investigate three-dimensional surface layer turbulence and the spatio-temporal patterns of heat transfer between the sub-surface, surface, and atmosphere. The Namib provides an ideal location for fundamental research that revisits some key assumptions in micrometeorology that are implicitly included in the parameterizations describing energy exchange in weather forecasting and climate models: Homogenous flat surfaces, no vegetation, little moisture, and cloud-free skies create a strong and consistent diurnal forcing, resulting in a wide range of atmospheric stabilities. A novel combination of instruments was used to simultaneously measure variables and processes relevant to heat transfer: A three km fibre-optic distributed temperature sensor (DTS) was suspended in a pseudo-three-dimensional array within a 300 m x 300 m domain to provide vertical cross-sections of air temperature fluctuations. Aerial and ground-based thermal imagers recorded high resolution surface temperature fluctuations within the domain and revealed the spatial thermal imprint of atmospheric structures responsible for heat exchange. High-resolution soil temperature and moisture profiles together with heat flux plates provided information on near-surface soil dynamics. Turbulent heat exchange was measured with a vertical array of five eddy-covariance point measurements on a 21-m mast, as well as by co-located small- and large-aperture scintillometers. This contribution first details the scientific goals and experimental set-up of the NamTEX campaign. Then using a typical day, we demonstrate i) the coupling of surface layer, surface, and soil temperatures using high-frequency temperature measurements, ii) differences in spatial and temporal standard deviations of the horizontal temperature field using spatially distributed measurements, and iii) horizontal anisotropy of the turbulent temperature field.


2013 ◽  
Vol 43 (1) ◽  
pp. 165-175 ◽  
Author(s):  
Adrian Constantin

Abstract This study presents some explicit exact solutions for nonlinear geophysical ocean waves in the β-plane approximation near the equator. The solutions are provided in Lagrangian coordinates by describing the path of each particle. The unidirectional equatorially trapped waves are symmetric about the equator and propagate eastward above the thermocline and beneath the near-surface layer to which wind effects are confined. At each latitude the flow pattern represents a traveling wave.


2013 ◽  
Vol 58 (2) ◽  
pp. 142-150 ◽  
Author(s):  
A.V. Sachenko ◽  
◽  
V.P. Kostylev ◽  
V.G. Litovchenko ◽  
V.G. Popov ◽  
...  

Author(s):  
Angeli Jayme ◽  
Imad L. Al-Qadi

A thermomechanical coupling between a hyper-viscoelastic tire and a representative pavement layer was conducted to assess the effect of various temperature profiles on the mechanical behavior of a rolling truck tire. The two deformable bodies, namely the tire and pavement layer, were subjected to steady-state-uniform and non-uniform temperature profiles to identify the significance of considering temperature as a variable in contact-stress prediction. A myriad of ambient, internal air, and pavement-surface conditions were simulated, along with combinations of applied tire load, tire-inflation pressure, and traveling speed. Analogous to winter, the low temperature profiles induced a smaller tire-pavement contact area that resulted in stress localization. On the other hand, under high temperature conditions during the summer, higher tire deformation resulted in lower contact-stress magnitudes owing to an increase in the tire-pavement contact area. In both conditions, vertical and longitudinal contact stresses are impacted, while transverse contact stresses are relatively less affected. This behavior, however, may change under a non-free-rolling condition, such as braking, accelerating, and cornering. By incorporating temperature into the tire-pavement interaction model, changes in the magnitude and distribution of the three-dimensional contact stresses were manifested. This would have a direct implication on the rolling resistance and near-surface behavior of flexible pavements.


1986 ◽  
Vol 19 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Ivo Wildhaber ◽  
Reiner Hegerl ◽  
Martin Barth ◽  
Heinz Gross ◽  
Wolfgang Baumeister

1997 ◽  
Vol 469 ◽  
Author(s):  
V. C. Venezia ◽  
T. E. Haynes ◽  
A. Agarwal ◽  
H. -J. Gossmann ◽  
D. J. Eaglesham

ABSTRACTThe diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.


2007 ◽  
Vol 15 (2) ◽  
pp. 26-31 ◽  
Author(s):  
Ben Lich

DualBeam instruments that combine the imaging capability of scanning electron microscopy (SEM) with the cutting and deposition capability of a focused ion beam (FIB) provide biologists with a powerful tool for investigating three-dimensional structure with nanoscale (1 nm-100 nm) resolution. Ever since Van Leeuwenhoek used the first microscope to describe bacteria more than 300 years ago, microscopy has played a central role in scientists' efforts to understand biological systems. Light microscopy is generally limited to a useful resolution of about a micrometer. More recently the use of confocal and electron microscopy has enabled investigations at higher resolution. Used with fluorescent markers, confocal microscopy can detect and localize molecular scale features, but its imaging resolution is still limited. SEM is capable of nanometer resolution, but is limited to the near surface region of the sample.


Sign in / Sign up

Export Citation Format

Share Document