scholarly journals The Namib Turbulence Experiment: Investigating surface-atmosphere heat transfer in three dimensions

Abstract The Namib Turbulence EXperiment (NamTEX) was a multi-national micrometeorological campaign conducted in the Central Namib Desert to investigate three-dimensional surface layer turbulence and the spatio-temporal patterns of heat transfer between the sub-surface, surface, and atmosphere. The Namib provides an ideal location for fundamental research that revisits some key assumptions in micrometeorology that are implicitly included in the parameterizations describing energy exchange in weather forecasting and climate models: Homogenous flat surfaces, no vegetation, little moisture, and cloud-free skies create a strong and consistent diurnal forcing, resulting in a wide range of atmospheric stabilities. A novel combination of instruments was used to simultaneously measure variables and processes relevant to heat transfer: A three km fibre-optic distributed temperature sensor (DTS) was suspended in a pseudo-three-dimensional array within a 300 m x 300 m domain to provide vertical cross-sections of air temperature fluctuations. Aerial and ground-based thermal imagers recorded high resolution surface temperature fluctuations within the domain and revealed the spatial thermal imprint of atmospheric structures responsible for heat exchange. High-resolution soil temperature and moisture profiles together with heat flux plates provided information on near-surface soil dynamics. Turbulent heat exchange was measured with a vertical array of five eddy-covariance point measurements on a 21-m mast, as well as by co-located small- and large-aperture scintillometers. This contribution first details the scientific goals and experimental set-up of the NamTEX campaign. Then using a typical day, we demonstrate i) the coupling of surface layer, surface, and soil temperatures using high-frequency temperature measurements, ii) differences in spatial and temporal standard deviations of the horizontal temperature field using spatially distributed measurements, and iii) horizontal anisotropy of the turbulent temperature field.

2021 ◽  
Vol 13 (6) ◽  
pp. 3255
Author(s):  
Aizhao Zhou ◽  
Xianwen Huang ◽  
Wei Wang ◽  
Pengming Jiang ◽  
Xinwei Li

For reducing the initial GSHP investment, the heat transfer efficiency of the borehole heat exchange (BHE) system can be enhanced to reduce the number or depth of drilling. This paper proposes a novel and simple BHE design by changing the cross-sectional shape of the U-tube to increase the heat transfer efficiency of BHEs. Specifically, in this study, we (1) verified the reliability of the three-dimensional numerical model based on the thermal response test (TRT) and (2) compared the inlet and outlet temperatures of the different U-tubes at 48 h under the premise of constant leg distance and fluid area. Referent to the circular tube, the increases in the heat exchange efficiencies of the curved oval tube, flat oval tube, semicircle tube, and sector tube were 13.0%, 19.1%, 9.4%, and 14.8%, respectively. (3) The heat flux heterogeneity of the tubes on the inlet and outlet sides of the BHE, in decreasing order, is flat oval, semicircle, curved oval, sector, and circle shapes. (4) The temperature heterogeneity of the borehole wall in the BHE in decreasing order is circle, sector, curved oval, flat oval, and semicircle shapes. (5) Under the premise of maximum leg distance, referent to the heat resistance of the tube with a circle shape at 48 h, the heat exchange efficiency of the curved oval, flat oval, semicircle, and sector tubes increased 12.6%, 17.7%, 10.3%, and 7.8%, respectively. (6) We found that the adjustments of the leg distance and the tube shape affect the heat resistance by about 25% and 12%, respectively. (7) The flat-oval-shaped tube at the maximum leg distance was found to be the best tube design for BHEs.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2016 ◽  
Vol 46 (1) ◽  
pp. 275-287 ◽  
Author(s):  
Cédric P. Chavanne ◽  
Patrice Klein

AbstractA quasigeostrophic model is developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasigeostrophic framework considered before since it takes into account the stratification within the surface mixed layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant stratification layers: a finite-thickness surface layer (or the mixed layer) and an infinitely deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive equation numerical simulation.


In steel industries the billets are heated in reheat furnace. The billets coming out from reheat furnace are transported to the rolling mill. Prediction of billet temperature during transport is vital for several reasons, like energy optimization studies, process simulation, roll force calculation and quality of the final product. Inadequate temperature measuring instruments demands suitable model for billet temperature predictions. In the present work, conduction heat transfer within the billet is modeled using the explicit finite difference method. To solve three dimensional transient discretization equations, code has been developed and implemented in MATLAB ® . Validation of the proposed numerical model has been done using analytical solutions. The model predictions of billet temperature are shown to be in good concurrence with analytical results. The model is capable of predicting temperature distribution within the billet. The model is used to examine the effect of billet transport velocity on the temperature field of the billet. The objective of this work to apply simple simulation technique to high temperature industrial process for temperature field measurements. This type of simulation may be useful for temperature predictions, design and study of new or existing transport system for hot billet transport.


Oceanography ◽  
2015 ◽  
Vol 28 (1) ◽  
pp. 142-149 ◽  
Author(s):  
Alexander Soloviev ◽  
◽  
Silvia Matt ◽  
Atsushi Fujimara

1988 ◽  
Vol 110 (3) ◽  
pp. 254-256 ◽  
Author(s):  
E. H. Wissler

Presented in this paper is a solution for countercurrent heat exchange between two parallel vessels embedded in an infinite medium with a linear temperature gradient along the axes of the vessels. The velocity profile within the vessel is assumed to be parabolic. This solution describes the temperature field within the vessels, as well as in the tissue, and establishes that the intravessel temperature is not uniform, as is generally assumed to be the case. An explicit expression for the intervessel thermal resistance based on the difference between cup-mixed mean temperatures is derived.


2011 ◽  
Vol 383-390 ◽  
pp. 6657-6662 ◽  
Author(s):  
Jun Xiao Feng ◽  
Qi Bo Cheng ◽  
Si Jing Yu

Based on the analysis of structural characteristic superiority, the process of combustion, flue gas flow and heat transfer in the upright magnesium reducing furnace, the three dimensional mathematical model is devoloped. And numerical simulation is performed further with the commercial software FLUENT. Finally, the flow and temperature field in furnace and temperature field in reducing pot have been obtained. The results indicate that the upright magnesium reducing furnace has perfect flue gas flow field and temperature field to meet the challenge of the magnesium reducing process; the major factors that affect the magnesium reducing reaction are the low thermal conductivity of slag and the high chemical reaction heat absorption.


Author(s):  
Adrian Briggs

This paper presents an overview of the use of low or mini-fin tubes for improving heat-transfer performance in shell-side condensers. The paper concentrates on, but is not limited to, the experimental and theoretical program in progress at Queen Mary, University of London. This work has so far resulted in an extensive data base of experimental data for condensation on single tubes, covering a wide range of tube geometries and fluid thermophysical properties and in the development of a simple to use model which predicts the majority of this data to within 20%. Work is progressing on the effects of vapor shear and on three-dimensional fin profiles; the later having shown the potential for even higher heat-transfer enhancement.


2019 ◽  
Vol 56 (6) ◽  
pp. 885-892 ◽  
Author(s):  
Louis King ◽  
Abdelmalek Bouazza ◽  
Anton Maksimenko ◽  
Will P. Gates ◽  
Stephen Dubsky

The measurement of displacement fields by nondestructive imaging techniques opens up the potential to study the pre-failure mechanisms of a wide range of geotechnical problems within physical models. With the advancement of imaging technologies, it has become possible to achieve high-resolution three-dimensional computed tomography volumes of relatively large samples, which may have previously resulted in excessively long scan times or significant imaging artefacts. Imaging of small-scale model piled embankments (142 mm diameter) comprising sand was undertaken using the imaging and medical beamline at the Australian Synchrotron. The monochromatic X-ray beam produced high-resolution reconstructed volumes with a fine texture due to the size and mineralogy of the sand grains as well as the phase contrast enhancement achieved by the monochromatic X-ray beam. The reconstructed volumes were well suited to the application of digital volume correlation, which utilizes cross-correlation techniques to estimate three-dimensional full-field displacement vectors. The output provides insight into the strain localizations that develop within piled embankments and an example of how advanced imaging techniques can be utilized to study the kinematics of physical models.


Sign in / Sign up

Export Citation Format

Share Document