scholarly journals Summary of Findings and Research Recommendations from the Gulf of Mexico Research Initiative

Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 228-239
Author(s):  
Charles Wilson ◽  
◽  
Michael Feldman ◽  
Michael Carron ◽  
Nilde Dannreuther ◽  
...  

Following the Deepwater Horizon explosion and oil spill in 2010, the Gulf of Mexico Research Initiative (GoMRI) was established to improve society’s ability to understand, respond to, and mitigate the impacts of petroleum pollution and related stressors of the marine and coastal ecosystems. This article provides a high-level overview of the major outcomes of the scientific work undertaken by GoMRI. This initiative contributed to significant knowledge advances across the physical, chemical, geological, and biological oceanographic research fields, as well as in related technology, socioeconomics, human health, and oil spill response measures. For each of these fields, this paper outlines key advances and discoveries made by GoMRI scientists (along with a few surprises), synthesizing their efforts in order to highlight lessons learned, future research needs, remaining gaps, and suggestions for the next generation of scientists.

Author(s):  
LCDR John LaMorte ◽  
LT Rebecca Brooks

ABSTRACT During the evening of 20 April, 2010 U.S. Coast Guard District Eight Command Center watch standers received a report of an explosion aboard the Deepwater Horizon (DWH), an oil rig working on the Macondo oil well approximately 42 miles Southeast of Venice, LA (OSC Report, 2011). The explosion on board the DWH and resulting fires eventually destroyed the oil rig and caused it to sink into the Gulf of Mexico. Eleven crewmembers lost their lives in the tragic events that unfolded that night, and one of the nation's largest environmental disasters would soon follow. Estimates of the oil discharged from the Macondo oil well were between 12,000 and 25,000 barrels per day, and the response involved approximately 47,000 oil spill response personnel, 6,870 vessels, approximately 4.12 million feet of boom, and 17,500 National Guard personnel, five states (OSC Report, 2011). The massive oil spill lasted 87 days and estimates suggest that more than 200 million gallons of oil was discharged into the Gulf of Mexico, which stands as the largest oil spill event in U.S. history. From these massive response operations came important lessons learned for SONS event planning, preparedness, and response, as it became apparent during DWH response operations that oil spill response governance and doctrine was not well understood across the whole-of-government. This issue was well documented in the National Incident Commander's report and several recommendations were identified to address this issue. This paper will explore the steps taken within the U.S. Coast Guard's (USCG) SONS Exercise and Training Program to promote a better understanding of oil spill response governance and doctrine among Cabinet-level senior leadership and the interagency representatives that will ultimately be involved when the next SONS event happens.


2020 ◽  
Vol 8 (9) ◽  
pp. 668
Author(s):  
Christopher H. Barker ◽  
Vassiliki H. Kourafalou ◽  
CJ Beegle-Krause ◽  
Michel Boufadel ◽  
Mark A. Bourassa ◽  
...  

Following the 2010 Deepwater Horizon accident of a massive blow-out in the Gulf of Mexico, scientists from government, industry, and academia collaborated to advance oil spill modeling and share best practices in model algorithms, parameterizations, and application protocols. This synergy was greatly enhanced by research funded under the Gulf of Mexico Research Initiative (GoMRI), a 10-year enterprise that allowed unprecedented collection of observations and data products, novel experiments, and international collaborations that focused on the Gulf of Mexico, but resulted in the generation of scientific findings and tools of broader value. Operational oil spill modeling greatly benefited from research during the GoMRI decade. This paper provides a comprehensive synthesis of the related scientific advances, remaining challenges, and future outlook. Two main modeling components are discussed: Ocean circulation and oil spill models, to provide details on all attributes that contribute to the success and limitations of the integrated oil spill forecasts. These forecasts are discussed in tandem with uncertainty factors and methods to mitigate them. The paper focuses on operational aspects of oil spill modeling and forecasting, including examples of international operational center practices, observational needs, communication protocols, and promising new methodologies.


2021 ◽  
Vol 167 ◽  
pp. 112313
Author(s):  
Zhaoyang Yang ◽  
Zhi Chen ◽  
Kenneth Lee ◽  
Edward Owens ◽  
Michel C. Boufadel ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. 2017031
Author(s):  
Steven Buschang

Texas produces nearly twice and much oil as the next highest producing U.S. state and has approximately 3300 miles of sensitive jurisdictional shoreline boarding the second highest area of our nation's oil production, the Gulf of Mexico. It is home to over 27 operating refineries and hosts 3 of the top 10 busiest ports in the nation. Since 1991, the Texas General Land Office (TGLO) has built an oil spill prevention and response program that is arguably the premier state oil spill program in the nation; one that responds 24/7 to over 600 reported spills per year, certifies, audits and inspects over 600 oil handling facilities, administers an abandoned vessel removal program, an oily bilge facility program, and has an ongoing oil spill R&D program and its own state Scientific Support Coordinator, ensuring that prevention, planning and response activities are state of the science. The TGLO produces the Texas Oil Spill Toolkit, now in its 17th edition, which is a spill planning and response resource for the western Gulf of Mexico, and houses a collection of plans and documents in a single, easy to use online/off-line .html format. Plans include up-to-date Area Committee Plans (ACP) and pre-planning documents, all aligned with the National Response Framework (NRF). Included are Regional Response Team VI (RRT) documents and guidance, pre-authorization plans and mapping for alternative spill response, Priority Protection Areas (PPA), Environmental Sensitivity Index Maps (ESI), and site specific Geographic Response Plans (GRP). This paper describes the conception, history and evolution of the building and operation of a state response organization in an era of “less government”.


2014 ◽  
Vol 2014 (1) ◽  
pp. 837-846
Author(s):  
Jin Xiang Cheng ◽  
Chun Chang Zhang ◽  
Hong Lei Xu ◽  
Shou Dong Wang

ABSTRACT In recent decades, China's strong economic development has brought higher risk of oil spill at sea from ships, oil exploration and land. Accordingly, China government has enacted some new laws and policies such as the compulsory requirements on certain ships calling Chinese ports enter into a preparedness and response contract with a pre-approved response organization, up to now, there are already 137 private oil spill response organizations along the coastline. Also, the port operators are required to invest on oil spill response equipments depending on the result of risk assessment. At the same time, the central government has invested more 20 stockpiles along the sea port and Yangzi River. Nowadays, the amount of clean-up equipments has reached to a historical high level, and the total investment in recent three years is near ten times more than those ten years ago. Therefore, scientific evaluation of the risk and its spatial distribution of oil spill, and development of the reasonable and effective oil spill response capability planning, are the major demands for marine environmental risk management in China. To solve the issues above, a model with oil spill risk evaluation and multi-objective response resources layout is proposed for multi–sources risk. Hopefully, the model will be used to develop the national plan for National Contingency Plan for oil spill capability building in China.


2017 ◽  
Vol 2017 (1) ◽  
pp. 104-123
Author(s):  
Yvonne Najah Addassi ◽  
Julie Yamamoto ◽  
Thomas M. Cullen

ABSTRACT The Refugio Oil Spill occurred on May 19, 2015, due to the failure of an underground pipeline, owned and operated by a subsidiary of Plains All-American Pipeline near Highway 101 in Santa Barbara County. The Responsible Party initially estimated the amount of crude oil released at about 104,000 gallons, with 21,000 gallons reaching the ocean. A Unified Command (UC) was established consisting of Incident Commanders from the U.S. Coast Guard (USCG), California Department of Fish and Wildlife (CDFW) Office of Spill Prevention and Response (OSPR), Santa Barbara County, and Plains Pipeline with additional participation by the U.S. Environmental Protection Agency and California State Parks. Within hours, the CDFW closed fisheries and the following day Governor Brown declared a state of emergency for Santa Barbara County. The released oil caused heavy oiling of both on and offshore areas at Refugio State Beach and impacted other areas of Santa Barbara and Ventura. A number of factors created unique challenges for the management of this response. In addition to direct natural resource impacts, the closure of beaches and fisheries occurred days before the Memorial Day weekend resulting in losses for local businesses and lost opportunities for the public. The Santa Barbara community, with its history with oil spills and environmental activism, was extremely concerned and interested in involvement, including the use of volunteers on beaches. Also this area of the coast has significant tribal and archeologic resources that required sensitive handling and coordination. Finally, this area of California’s coast is a known natural seep area which created the need to distinguish spilled from ‘naturally occurring’ oil. Most emergency responses, including oil spills, follow a similar pattern of command establishment, response and cleanup phases, followed by non-response phase monitoring, cleanup and restoration. This paper will analyze the Refugio oil spill response in three primary focus areas: 1) identify the ways in which this spill response was unique and required innovative and novel solutions; 2) identify the ways in which this response benefited from the ‘lessons’ learned from both the Deepwater Horizon and Cosco Busan oil spills; and 3) provide a summary of OSPR’s response evaluation report for Refugio, with specific focus on how the lessons learned and best practices will inform future planning efforts within California.


1997 ◽  
Vol 1997 (1) ◽  
pp. 513-515
Author(s):  
John H. Giesen ◽  
Jon D. MacArthur

ABSTRACT Faced with training and travel dollar constraints, California's Department of Fish and Game and the 11th U.S. Coast Guard District worked to form a multiorganizational partnership designed to leverage required resources to conduct a premier operational-level oil spill response training program in the state. The partnership included no less than six major organizations from both the public and private sectors, each playing critical roles in planning and conducting the training. Major hurdles overcome were curriculum development and operational support. Both of these challenges were resolved through a unified management approach in which the ultimate objective became success of the course. The lessons learned from the program provide guidance and rationale for future such efforts.


2014 ◽  
Vol 2014 (1) ◽  
pp. 2098-2111
Author(s):  
Kelly Lynn Schnapp ◽  
Joseph Leonard ◽  
Michael Drieu ◽  
Bryan Rogers

ABSTRACT This paper seeks to better prepare the oil spill response community for incorporating well control into a response organization, based on conditional considerations rather than long and firmly held assumptions. Techniques used to control a well, after a blowout, are more closely related to technical well drilling and control activities rather than to operations intended to address oil in the environment. When oil is released from a well in the Outer Continental Shelf (OCS), response organizers need to consider various factors influencing the organization that may exist at the time. These include a working knowledge of well control by response leadership; strength of responder relationships; and response complexity (to include authority, stakeholder and public expectations). This is particularly true when incorporating the well control support function in the oil spill response operational planning processes, usually facilitated by the Incident Command System (ICS). Within the last three years, complex well control operations were uniquely incorporated into response organizations during two Government Initiated Unannounced Exercises (GIUEs) and during the DEEPWATER HORIZON incident. Three options will be presented. Considerations for incorporating well control into a response organization will be presented using the case studies noted previously and by comparing similar lessons learned from the salvage industry in the late 1990's. Options presented help demonstrate that response organization flexibility is key to a successful response. This paper seeks to illuminate options surrounding placement of well control within an incident command structure based upon unique incident situational realities.


Sign in / Sign up

Export Citation Format

Share Document