A Validated HPLC Method for Simultaneous Determination of Perindopril Arginine, Amlodipine, and Indapamide: Application in Bulk and in Different Pharmaceutical Dosage Forms

2017 ◽  
Vol 100 (4) ◽  
pp. 992-999 ◽  
Author(s):  
Ramzia I El-Bagary ◽  
Ehab F Elkady ◽  
Shereen Mowaka ◽  
Maria A Attallah

Abstract A simple, accurate, and precise LC method with a reversed stationary phase was developed and validated for the determination of perindopril (PER) arginine, amlodipine (AML), and indapamide (IND) alone and in binary mixtures (PER arginine is found in two dosage forms, i.e., with either AML or IND). Chromatographic separation was carried out on a BDS Hypersil® C18 column (100 × 3 mm, 5 μm). The mobile phase, consisting of 0.05 M potassium dihydrogen phosphate buffer (pH 2.6)–methanol (50 + 50, v/v), was pumped through the column whose temperature was maintained at 50°C at a flow rate of 0.6 mL/min using isocratic elution, and UV detection at 215 nm was performed. Acceptable values of linearity, accuracy, and precision of the method were found over the concentration ranges of 5–80 μg/mL PER, 2.5–80 μg/mL AML, and 0.5–20 μg/mL IND. The proposed chromatographic method was statistically compared to that of reference methods using one-way analysis of variance. The results showed that there was no significant difference between the methods. The developed method proved reliable for use in accurate QC of the drugs in their pharmaceutical preparations.

2015 ◽  
Vol 98 (6) ◽  
pp. 1542-1548 ◽  
Author(s):  
Mariusz Stolarczyk ◽  
Urszula Hubicka ◽  
Barbara Zuromska-Witek ◽  
Jan Krzek

Abstract A new sensitive, simple, rapid, and precise HPLC method with diode array detection has been developed for separation and simultaneous determination of hydrochlorothiazide, furosemide, torasemide, losartane, quinapril, valsartan, spironolactone, and canrenone in combined pharmaceutical dosage forms. The chromatographic analysis of the tested drugs was performed on an ACE C18, 100 Å, 250 × 4.6 mm, 5 μm particle size column with 0;0.05M phosphate buffer (pH = 3.00)–acetonitrile–methanol (30 + 20 + 50 v/v/v) mobile phase at a flow rate of 1.0 mL/min. The column was thermostatted at 25°C. UV detection was performed at 230 nm. Analysis time was 10 min. The elaborated method meets the acceptance criteria for specificity, linearity, sensitivity, accuracy, and precision. The proposed method was successfully applied for the determination of the studied drugs in the selected combined dosage forms.


2017 ◽  
Vol 36 (2) ◽  
pp. 201 ◽  
Author(s):  
Tanja Bakovska Stoimenova ◽  
Marjan Piponski ◽  
Gordana Trendovska Serafimovska ◽  
Marina Stefova

A fast, simple, cost-effective and robust chromatographic method was developed and validated for determination of the antihypertensive drug lisinopril dihydrate in tablets under routine operational conditions, without ion-pair reagents, high column temperatures and an acidic mobile phase. Taking into consideration all four different pKa values of lisinopril, the separation was optimized using the C18 column (end-capped, 150 mm × 4.6 mm 5 µm) and a mobile phase composed of methanol and ammonium (or potassium) dihydrogen phosphate buffer (pH 7.2) with a flow rate of 1.1 ml/min, UV detection at 214 nm and a temperature of 40 °C. These optimized conditions led to the production of a single and symmetrical peak for lisinopril. This mobile phase is suitable for different HPLC columns, which makes it appropriate for industrial quality control laboratories. The developed method was validated, showing excellent validation results and the possibility to be implemented for the determination of lisinopril in combined dosage forms with other active substances.


2015 ◽  
Vol 98 (6) ◽  
pp. 1496-1502 ◽  
Author(s):  
Ramzia I El-Bagary ◽  
Ehab F Elkady ◽  
Shereen Mowaka ◽  
Maria Attallah

Abstract Two simple, accurate, and precise chromatographic methods have been developed and validated for the determination of dronedarone (DRO) HCl and amiodarone (AMI) HCl either alone or in binary mixtures due to the possibility of using AMI as a counterfeit of DRO because of its lower price. First, an RP-HPLC method is described for the simultaneous determination of DRO and AMI. Chromatographic separation was achieved on a BDS Hypersil C18 column (150 × 4.6 mm, 5 μm). Isocratic elution based on potassium dihydrogen phosphate buffer with 0.1% triethylamine pH 6–methanol (10 + 90, v/v) at a flow rate of 2 mL/min with UV detection at 254 nm was performed. The second method is RP ultra-HPLC in which the chromatographic separation was achieved on an AcclaimTM RSLC 120 C18 column (100 × 2.1 mm, 2.2 μm) using isocratic elution with potassium dihydrogen phosphate buffer with 0.1% triethylamine pH 6–methanol (5 + 95, v/v) at a flow rate of 1 mL/min with UV detection at 254 nm. Linearity, accuracy, and precision of the two methods were found to be acceptable over the concentration ranges of 5–80 μg/mL for both DRO and AMI. The results were statistically compared using one-way analysis of variance. The optimized methods were validated and proved to be specific, robust, precise, and accurate for the QC of the drugs in their pharmaceutical preparations.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Laura D. Simionato ◽  
Leonardo Ferello ◽  
Sebastián Stamer ◽  
Patricia D. Zubata ◽  
Adriana I. Segall

Simple, sensitive, and economical simultaneous volumetric and HPLC methods for the determination of pridinol mesylate in raw material have been developed. The volumetric method is based on the reaction of pridinol with sodium lauryl sulphate in diluted sulphuric acid. Dimethyl yellow was used as indicator to detect the end point of the titration in aqueous/organic layer. The HPLC method for the determination of pridinol mesylate employs a reverse phase C18 column at ambient temperature with a mobile phase consisting of acetonitrile: 0.05 M potassium dihydrogen phosphate, pH adjusted to 5.0 (1 : 2, v/v). The flow rate was 0.8 mL/min. Quantitation was achieved with UV detection at 258 nm based on peak area. Both methods were found to be suitable for the quality control of pridinol mesylate in raw material.


2022 ◽  
Vol 2152 (1) ◽  
pp. 012016
Author(s):  
Yun Yun ◽  
Mingshi Lin

Abstract Objective “To establish an HPLC method for the determination of metronidazole and chlorhexidine gluconate in metronidazole and chlorhexidine lotion. Method Using Agilent Eclipse-XDB-C18 chromatographic column, with 0.05 mol·L-1 potassium dihydrogen phosphate solution 1000 ml plus 13.2 ml 10% tetrabutylammonium hydroxide aqueous solution (pH adjusted to 3.5 by phosphoric acid)-acetonitrile (77:23) as Mobile phase, detection wavelength 230 nm. Results The two components could be separated well. The linear ranges of metronidazole and chlorhexidine acetate were 36.33~59.04 μg·ml-1 (r = 0.9994) and 35.45~220.11 μg·ml-1 (r = 1).); The average recoveries were 100.6% and 100.5 %, and the RSD were 0.42% and 0.58%. Conclusion: The method is simple and specific, and the result is more accurate and reliable. Which is suitable for simultaneous determination of two components in compound preparations.


2018 ◽  
Vol 101 (2) ◽  
pp. 401-409 ◽  
Author(s):  
Asmaa A El-Zaher ◽  
Ehab F Elkady ◽  
Hanan M Elwy ◽  
Mahmoud Abo El Makarim Saleh

Abstract A new LC method is introduced with the concept of its versatile application to widely used drugs from different pharmacological classes. Metformin hydrochloride (MTF), sitagliptin phosphate (SIT), simvastatin (SIM) and ezetimibe (EZB) were simultaneously determined with a simple reversed-phase LC method in which a SIT–SIM binary mixture, present in a dosage form brand, was considered central for its development. Chromatographic separation was achieved with a mobile phase of acetonitrile and 0.02 M potassium dihydrogen phosphate (pH 5.2) (77 + 23, v/v) flowing through a C18 column (BDS Hypersil, 250 × 4.6 mm, 5 µm) at 1.2 mL/min at ambient temperature. UV detection was programmed to be carried out at 210 nm for EZB, SIT, and MTF, whereas SIM was detected at 240 nm. The method was validated according to International Conference on Harmonization guidelines. Linearity, accuracy, and precision were satisfactory over concentration ranges 4–40 µg/mL for EZB and SIM, 0.5–50 µg/mL for SIT, and 5–500 µg/mL for MTF. Coefficients of determination were >0.99 for the four drugs. LOQs found were 0.01 µg/mL for EZB, 0.02 µg/mL for SIT, 0.2 µg/mL for MTF, and 0.02 µg/mL for SIM. The developed method is simple, rapid, accurate, precise, and suitable for the routine QC analysis of the cited drugs in pharmaceutical products by conventional HPLC systems.


2005 ◽  
Vol 88 (4) ◽  
pp. 1148-1154 ◽  
Author(s):  
Juan C Rodríguez ◽  
Julia Barciela ◽  
Sagrario García ◽  
Carlos Herrero ◽  
Rosa M Peña

Abstract Multivariate experimental design has been used to optimize 2 flow-injection spectrophotometric methods for the determination of indapamide in pharmaceutical dosage forms, both pure and commercial tablets. The methods are based on the oxidation of this drug with iron (III) in acidic medium and the subsequent formation of an intensive orange-red complex between the liberated iron (II) and 2,2′-bipyridyl or 1,10-phenanthroline reagents. Plackett-Burman designs were applied as a screening method to evaluate the most significant factors with few experiments. Central composite 23+ star designs were performed to evaluate the response surfaces. The methods have been fully validated and were applied successfully to the determination of indapamide in pure and pharmaceutical forms with good accuracy and precision. Therefore, the 2 proposed procedures are simple, inexpensive, and rapid flow methods for the routine determination of indapamide in pharmaceutical preparations.


Author(s):  
RAGAA EL-SHEIKH ◽  
AHLAM E. ABD ELLATEIF ◽  
ESRAA AKMAL ◽  
AYMAN A. GOUDA

Objective: Three sensitive, simple, precise, reproducible, and validated spectrophotometric methods have been developed for the determination of anti-psychotic drug (asenapine maleate) in pure and pharmaceutical dosage forms. Methods: The methods are based on the formation of yellow-colored ion-pair complex between asenapine maleate and three acid dyes, namely, bromocresol purple (BCP), bromophenol blue (BPB) and bromothymol blue (BTB) with absorption maxima at 410, 414 and 416 nm, respectively. Several parameters such as pH, buffer type and volume, reagent volume, the sequence of addition and effect of extracting solvent were optimized. Results: Under the optimum experimental conditions, beer’s law is obeyed over the concentration ranges of 1.0–20, 1.0–14, and 1.0-16 μg/ml for BCP, BPB and BTB, respectively, with good correlation coefficients (0.9994-0.9998). The apparent molar absorptivity and Sandell’s sensitivity values are reported for all methods. The limit of detection (LOD) and the limit of quantification (LOQ) values are found to be 0.27, 0.30, and 0.25 μg/ml and 0.90, 1.0, and 0.83 μg/ml for BCP, BPB and BTB, respectively. The stoichiometric ratio of the formed ion-pair complexes was found to be 1:1 (drug: reagent) for all methods, as deduced by Job's method of continuous variation. Conclusion: The proposed methods were successfully applied for the determination of asenapine maleate in pharmaceutical formulations with good accuracy and precision. Statistical comparison of the results was performed using Student's t-test and variance ratio F-test at the 95% confidence level and there was no significant difference between the reported and proposed methods regarding accuracy and precision. Further, the validity of the proposed methods was confirmed by recovery studies via standard addition technique in accordance with ICH guidelines.


2016 ◽  
Vol 99 (4) ◽  
pp. 957-963 ◽  
Author(s):  
Asmaa A El-Zaher ◽  
Ehab F Elkady ◽  
Hanan M Elwy ◽  
Mahmoud A Saleh

Abstract A rapid, simple, and precise RPLC method was developed for the simultaneous determination of the widely used oral antidiabetic, metformin hydrochloride (MTF), with some commonly coadministered oral antidiabetics from different pharmacological classes—glipizide (GPZ), pioglitazone hydrochloride (PGZ), glimepiride (GLM), and repaglinide (RPG)—in bulk, laboratory-prepared mixtures and pharmaceutical formulations in the presence of metformin-reported impurity [1-cyanoguanidine (CNG)]. Chromatographic separation was achieved using isocratic elution mode with a mobile phase of acetonitrile: 0.02 M potassium dihydrogen phosphate (pH 3.17; 50–50, v/v) flowing through a CN Phenomenex column (Phenosphere Next, 250 × 4.6 mm, 5 μm) at a rate of 1.5 mL/min at ambient temperature. UV detection was carried out at 220 nm. The method was validated according to International Conference on Harmonization guidelines. Linearity, accuracy, and precision were satisfactory for concentration ranges: 0.175–350 μg/mL for MTF, 0.0525–105 μg/mL for GPZ, 0.125–250 μg/mL for PGZ, and 0.05–100 μg/mL for GLM and RPG. Correlation coefficients were >0.99 for all analytes. LOQs were 0.009 μg/mL for MTF, 0.009 μg/mL for GPZ, 0.04 μg/mL for GLM, 0.124 μg/mL for PGZ, and 0.044 μg/mL for RPG. The developed method is specific, accurate, and suitable for the QC and routine analysis of the cited drugs in their pharmaceutical products.


2012 ◽  
Vol 95 (6) ◽  
pp. 1629-1638 ◽  
Author(s):  
Nada S Abdelwahab

Abstract Determination of ternary mixtures of ambroxol hydrochloride, guaifenesin, and theophylline with minimum sample pretreatment and without analyte separation has been successfully achieved by using chemometric and RP-HPLC methods. The developed chemometric models are partial least squares (PLS) and genetic algorithm coupled with PLS. Data of the analyses were obtained from UV-Vis spectra of the studied drugs in different concentration ranges. These models have been successfully updated to be applied for determination of the proposed drugs in Farcosolvin® syrup and in the presence of a syrup excipient (methyl paraben). In the developed RP- HPLC method, chromatographic runs were performed on an RP-C18 analytical column with the isocratic mobile phase 0.05 M phosphate buffer–methanol–acetonitrile–triethylamine (63.5 + 27.5 + 9 + 0.25, v/v/v/v, pH 5.5 adjusted with orthophosphoric acid) at a flow rate of 1.2 mL/min. The analytes were detected and quantified at 220 nm. The method was optimized in order to obtain good resolution between the studied components and to prevent interference from methyl paraben. Method validation was performed with respect to International Conference on Harmonization guidelines and the validation acceptance criteria were met in all cases. The proposed methods can be considered acceptable for QC of the studied drugs in pharmaceutical capsules and syrup. The results obtained by the suggested chemometric methods for determination of the studied mixture in different pharmaceutical preparations were statistically compared to those obtained by applying the developed RP-HPLC method, and no significant difference was found.


Sign in / Sign up

Export Citation Format

Share Document