Natural Dietary Phytosterols

2015 ◽  
Vol 98 (3) ◽  
pp. 679-684 ◽  
Author(s):  
Susan B Racette ◽  
Xiaobo Lin ◽  
Lina Ma ◽  
Richard E Ostlund, Jr

Abstract Most clinical phytosterol studies are performed by adding purified supplements to smaller phytosterol amounts present in the natural diet. However, natural dietary phytosterols themselves may also have important effects on cholesterol metabolism. Epidemiological work using food frequency questionnaires to estimate dietary intake suggest that extremes of normal consumption may be associated with 3–14% changes in LDL cholesterol. Standardized food databases do not have enough phytosterol values to allow calculation of phytosterol intake for individuals outside of specialized studies. Natural diets contain phytosterol amounts ranging from less than 60 mg/2000 kcal to over 500 mg/2000 kcal. Physiological studies in which whole body cholesterol metabolism is investigated show large effects of natural dietary phytosterols on cholesterol absorption efficiency, cholesterol biosynthesis and cholesterol excretion which exceed the magnitude of changes in LDL cholesterol. The dual effects of natural phytosterols on both LDL-C and whole body cholesterol metabolism need to be considered in relating them to potential protection from coronary heart disease risk.

2019 ◽  
Author(s):  
Felice Amato ◽  
Alice Castaldo ◽  
Giuseppe Castaldo ◽  
Gustavo Cernera ◽  
Gaetano Corso ◽  
...  

AbstractPatients with cystic fibrosis (CF) have low cholesterol absorption and, despite enhanced endogenous biosynthesis, low serum cholesterol. Herein, we investigated cholesterol metabolism in a murine CF model in comparison to wild type (WT) testing serum and liver surrogate biomarkers together with the hepatic expression of genes involved in cholesterol metabolism. CF mice display lower sterols absorption and increased endogenous biosynthesis. Subsequently, we evaluated the effects of a cholesterol-supplemented diet on cholesterol metabolism in CF and WT mice. The supplementation in WT mice determines biochemical changes similar to humans. Instead, CF mice with supplementation did not show significant changes, except for serum phytosterols (−50%), liver cholesterol (+35%) and TNFα mRNA expression, that resulted 5-fold higher than in CF without supplementation. However, liver cholesterol in CF mice with supplementation resulted significantly lower compared to WT supplemented mice. This study shows that in CF mice there is a vicious circle in which the altered bile salts synthesis/secretion contribute to reduce cholesterol digestion/absorption. The consequence is the enhanced liver cholesterol biosynthesis that accumulates in the cell triggering inflammation.


Endocrinology ◽  
2018 ◽  
Vol 160 (4) ◽  
pp. 744-758 ◽  
Author(s):  
Luca Meoli ◽  
Danny Ben-Zvi ◽  
Courtney Panciotti ◽  
Stephanie Kvas ◽  
Palmenia Pizarro ◽  
...  

Abstract Roux-en-Y gastric bypass (RYGB) surgery is one of the most effective treatment options for severe obesity and related comorbidities, including hyperlipidemia, a well-established risk factor of cardiovascular diseases. Elucidating the molecular mechanisms underlying the beneficial effects of RYGB may facilitate development of equally effective, but less invasive, treatments. Recent studies have revealed that RYGB increases low-density lipoprotein receptor (LDLR) expression in the intestine of rodents. Therefore, in this study we first examined the effects of RYGB on intestinal cholesterol metabolism in human patients, and we show that they also exhibit profound changes and increased LDLR expression. We then hypothesized that the upregulation of intestinal LDLR may be sufficient to decrease circulating cholesterol levels. To this end, we generated and studied mice that overexpress human LDLR specifically in the intestine. This perturbation significantly affected intestinal metabolism, augmented fecal cholesterol excretion, and induced a reciprocal suppression of the machinery related to luminal cholesterol absorption and bile acid synthesis. Circulating cholesterol levels were significantly decreased and, remarkably, several other metabolic effects were similar to those observed in RYGB-treated rodents and patients, including improved glucose metabolism. These data highlight the importance of intestinal cholesterol metabolism for the beneficial metabolic effects of RYGB and for the treatment of hyperlipidemia.


2000 ◽  
Vol 84 (6) ◽  
pp. 885-890 ◽  
Author(s):  
Alexandre Loktionov ◽  
Serena Scollen ◽  
Nicola McKeown ◽  
Sheila A. Bingham

Apolipoprotein E (ApoE) genotype influence on the relationship between dietary risk factors for cardiovascular disease and blood serum lipid levels was investigated in 132 free-living individuals participating in the European Prospective Investigation of Cancer (EPIC) study. All subjects (age 40–69) were clinically healthy and provided information on their usual diet. ApoE genotype and serum lipid concentrations were determined in all subjects. Relationships of intake of dietary constituents with serum lipid levels were compared in different genotype groups. There was a significant correlation between total serum cholesterol and intake of energy derived from total fat (r 0·195; P 0·025) and saturated fat (r 0·174; P 0·046) in the cohort as a whole. However, individuals with the ApoE ε3/ε4 genotype displayed a much stronger positive correlation between LDL cholesterol level and the percentage of energy derived from intake of saturated fat (r 0·436; P 0·043). There were no significant associations in the groups with ε3/ε3 or ε2/ε2 & ε2/ε3 genotype. A significant positive correlation between alcohol consumption and HDL cholesterol level was present in individuals bearing ApoE ε2 allele. These findings support current public health recommendations that saturated fat consumption should be reduced in order to reduce coronary heart disease risk. Total cholesterol concentrations were positively related to saturated fat intake in the cohort as a whole, but elevated LDL cholesterol levels associated with high saturated fat intake can be expected particularly in those individuals who combine a ‘risky’ dietary behaviour with the presence of the ε4 variant of ApoE.


2020 ◽  
Vol 26 (40) ◽  
pp. 5152-5162
Author(s):  
Eder Carlos Rocha Quintão

Plasma concentrations of phytosterols and non-cholesterol sterol precursors of cholesterol synthesis have been used as markers of intestinal cholesterol absorption and synthesis in inherited and secondary dyslipidemias and in population-based investigations to evaluate the risk for cardiovascular disease, respectively. The method aims at replacing initial research procedures such as the use of stable isotopes associated with fecal steroid balance, which are limited by the high cost and tedious procedures. However, we show in this review that numerous results obtained with serum sterol measurements are contradictory. In this regard, the following points are discussed: 1) how phytosterols relate to atherosclerosis considering that defects in biliary output or in the transport of phytosterols from the intestinal mucosa back into the intestinal lumen provide increased content of phytosterols and other sterols in plasma and tissues, thus not allowing to conclude that their presence in arteries and atheromas represents the etiology of atherosclerosis; 2) serum non-cholesterol sterols as markers of cholesterol synthesis and absorption, such as cholestanol, present discrepant results, rendering them often inadequate to identify cases of coronary artery disease as well as alterations in the whole body cholesterol metabolism; 3) such methods of measurement of cholesterol metabolism are confounded by factors like diabetes mellitus, body weight and other pathologies including considerable hereditary hyperlipidemias biological variabilities that influence the efficiency of synthesis and intestinal absorption of cholesterol.


2009 ◽  
Vol 296 (4) ◽  
pp. G931-G935 ◽  
Author(s):  
Xiaobo Lin ◽  
Lina Ma ◽  
Susan B. Racette ◽  
Catherine L. Anderson Spearie ◽  
Richard E. Ostlund

Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% ( P < 0.0001) and phytosterol esters 30.6 ± 3.9% ( P = 0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.


2000 ◽  
Vol 11 (7-8) ◽  
pp. 358-366 ◽  
Author(s):  
Tripurasundari Ramjiganesh ◽  
Suheeta Roy ◽  
Robert J Nicolosi ◽  
Tracy L Young ◽  
Jonathan C McIntyre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document