scholarly journals CONSTRUÇÃO DE IMAGENS PANORÂMICAS EM MÚLTIPLAS FAIXAS DE ALTURA E LARGURA USANDO ALGORITMOS WATERSHED E GRAPH-CUT

2021 ◽  
Vol 13 (2) ◽  
pp. 36-46
Author(s):  
Caio Chizzolini Silva ◽  
Francisco Assis da Silva ◽  
Leandro Luiz de Almeida ◽  
Danillo Roberto Pereira ◽  
Almir Olivette Artero ◽  
...  

In this work we developed an algorithm for building panoramas with multiple height and width ranges. For multilinear stitching, images were initially placed in a matrix and partial panoramas with images from the same column are generated. To complete the final panorama, the columns were divided with the help of support points and the neighboring columns were stitched, being reassembled at the end of the process. The stitching was performed with a graph cut algorithm in conjunction with the Watershed algorithm.

2012 ◽  
Author(s):  
Tatjana Wiese ◽  
Jianhua Yao ◽  
Joseph E. Burns ◽  
Ronald M. Summers

2011 ◽  
Vol 341-342 ◽  
pp. 546-549
Author(s):  
Jing Rong ◽  
Yu Li Pan

Traditional Graph-Cut algorithm traverses all pixels at each time of computation; consequently, it consumes a lot of time. This paper improves on Graph-Cut algorithm based on characteristics of Watershed. The basic theory is to insert watershed into Graph-Cut to conduct pre-segmentation on image. With watershed, image is divided into regions which have different sizes and pixel color similarities. Images processed by watershed algorithm are converted into weighted undirected graph; and then translate energy function on pixel into that graph on separate regions after pre-segmentation. Performance of test programs has proved that the improved Graph-Cut algorithm can increase workload of user interaction mark effectively. As long as workload considered in the interaction process, improved Graph-Cut algorithm can achieve ideal segmentation effect even on complex background.


2018 ◽  
pp. 7-17
Author(s):  
Elena Viktorovna Tikhomirova ◽  
Anna Gennadievna Samokhvalova ◽  
Anatoly Grigorievich Kirpichnik ◽  
Daria Andreevna Dolotova

2012 ◽  
Vol 3 (2) ◽  
pp. 253-255
Author(s):  
Raman Brar

Image segmentation plays a vital role in several medical imaging programs by assisting the delineation of physiological structures along with other parts. The objective of this research work is to segmentize human lung MRI (Medical resonance Imaging) images for early detection of cancer.Watershed Transform Technique is implemented as the Segmentation method in this work. Some comparative experiments using both directly applied watershed algorithm and after marking foreground and computed background segmentation methods show the improved lung segmentation accuracy in some image cases.


2020 ◽  
Vol 86 (5) ◽  
pp. 65-72
Author(s):  
Yu. D. Grigoriev

The problem of constructing Q-optimal experimental designs for polynomial regression on the interval [–1, 1] is considered. It is shown that well-known Malyutov – Fedorov designs using D-optimal designs (so-called Legendre spectrum) are other than Q-optimal designs. This statement is a direct consequence of Shabados remark which disproved the Erdős hypothesis that the spectrum (support points) of saturated D-optimal designs for polynomial regression on a segment appeared to be support points of saturated Q-optimal designs. We present a saturated exact Q-optimal design for polynomial regression with s = 3 which proves the Shabados notion and then extend this statement to approximate designs. It is shown that when s = 3, 4 the Malyutov – Fedorov theorem on approximate Q-optimal design is also incorrect, though it still stands for s = 1, 2. The Malyutov – Fedorov designs with Legendre spectrum are considered from the standpoint of their proximity to Q-optimal designs. Case studies revealed that they are close enough for small degrees s of polynomial regression. A universal expression for Q-optimal distribution of the weights pi for support points xi for an arbitrary spectrum is derived. The expression is used to tabulate the distribution of weights for Malyutov – Fedorov designs at s = 3, ..., 6. The general character of the obtained expression is noted for Q-optimal weights with A-optimal weight distribution (Pukelsheim distribution) for the same problem statement. In conclusion a brief recommendation on the numerical construction of Q-optimal designs is given. It is noted that in this case in addition to conventional numerical methods some software systems of symbolic computations using methods of resultants and elimination theory can be successfully applied. The examples of Q-optimal designs considered in the paper are constructed using precisely these methods.


2011 ◽  
Vol 31 (3) ◽  
pp. 760-762
Author(s):  
Ji LIU ◽  
Xiao-dong KANG ◽  
Fu-cang JIA

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doan Cong Le ◽  
Krisana Chinnasarn ◽  
Jirapa Chansangrat ◽  
Nattawut Keeratibharat ◽  
Paramate Horkaew

AbstractSegmenting a liver and its peripherals from abdominal computed tomography is a crucial step toward computer aided diagnosis and therapeutic intervention. Despite the recent advances in computing methods, faithfully segmenting the liver has remained a challenging task, due to indefinite boundary, intensity inhomogeneity, and anatomical variations across subjects. In this paper, a semi-automatic segmentation method based on multivariable normal distribution of liver tissues and graph-cut sub-division is presented. Although it is not fully automated, the method minimally involves human interactions. Specifically, it consists of three main stages. Firstly, a subject specific probabilistic model was built from an interior patch, surrounding a seed point specified by the user. Secondly, an iterative assignment of pixel labels was applied to gradually update the probabilistic map of the tissues based on spatio-contextual information. Finally, the graph-cut model was optimized to extract the 3D liver from the image. During post-processing, overly segmented nodal regions due to fuzzy tissue separation were removed, maintaining its correct anatomy by using robust bottleneck detection with adjacent contour constraint. The proposed system was implemented and validated on the MICCAI SLIVER07 dataset. The experimental results were benchmarked against the state-of-the-art methods, based on major clinically relevant metrics. Both visual and numerical assessments reported herein indicated that the proposed system could improve the accuracy and reliability of asymptomatic liver segmentation.


2021 ◽  
Vol 13 (8) ◽  
pp. 1442
Author(s):  
Kaisen Ma ◽  
Yujiu Xiong ◽  
Fugen Jiang ◽  
Song Chen ◽  
Hua Sun

Detecting and segmenting individual trees in forest ecosystems with high-density and overlapping crowns often results in bias due to the limitations of the commonly used canopy height model (CHM). To address such limitations, this paper proposes a new method to segment individual trees and extract tree structural parameters. The method involves the following key steps: (1) unmanned aerial vehicle (UAV)-scanned, high-density laser point clouds were classified, and a vegetation point cloud density model (VPCDM) was established by analyzing the spatial density distribution of the classified vegetation point cloud in the plane projection; and (2) a local maximum algorithm with an optimal window size was used to detect tree seed points and to extract tree heights, and an improved watershed algorithm was used to extract the tree crowns. The proposed method was tested at three sites with different canopy coverage rates in a pine-dominated forest in northern China. The results showed that (1) the kappa coefficient between the proposed VPCDM and the commonly used CHM was 0.79, indicating that performance of the VPCDM is comparable to that of the CHM; (2) the local maximum algorithm with the optimal window size could be used to segment individual trees and obtain optimal single-tree segmentation accuracy and detection rate results; and (3) compared with the original watershed algorithm, the improved watershed algorithm significantly increased the accuracy of canopy area extraction. In conclusion, the proposed VPCDM may provide an innovative data segmentation model for light detection and ranging (LiDAR)-based high-density point clouds and enhance the accuracy of parameter extraction.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Walter M. Yamada ◽  
Michael N. Neely ◽  
Jay Bartroff ◽  
David S. Bayard ◽  
James V. Burke ◽  
...  

Population pharmacokinetic (PK) modeling has become a cornerstone of drug development and optimal patient dosing. This approach offers great benefits for datasets with sparse sampling, such as in pediatric patients, and can describe between-patient variability. While most current algorithms assume normal or log-normal distributions for PK parameters, we present a mathematically consistent nonparametric maximum likelihood (NPML) method for estimating multivariate mixing distributions without any assumption about the shape of the distribution. This approach can handle distributions with any shape for all PK parameters. It is shown in convexity theory that the NPML estimator is discrete, meaning that it has finite number of points with nonzero probability. In fact, there are at most N points where N is the number of observed subjects. The original infinite NPML problem then becomes the finite dimensional problem of finding the location and probability of the support points. In the simplest case, each point essentially represents the set of PK parameters for one patient. The probability of the points is found by a primal-dual interior-point method; the location of the support points is found by an adaptive grid method. Our method is able to handle high-dimensional and complex multivariate mixture models. An important application is discussed for the problem of population pharmacokinetics and a nontrivial example is treated. Our algorithm has been successfully applied in hundreds of published pharmacometric studies. In addition to population pharmacokinetics, this research also applies to empirical Bayes estimation and many other areas of applied mathematics. Thereby, this approach presents an important addition to the pharmacometric toolbox for drug development and optimal patient dosing.


Sign in / Sign up

Export Citation Format

Share Document