scholarly journals The estimation of river discharge by using the mean velocity equation in a unsteady condition

2013 ◽  
Vol 14 (12) ◽  
pp. 6558-6564
Author(s):  
Tai Ho Choo ◽  
Soo Kwon Chae ◽  
Hyeon Cheol Yoon ◽  
Gwan Seon Yun
2014 ◽  
Vol 905 ◽  
pp. 369-373
Author(s):  
Choo Tai Ho ◽  
Yoon Hyeon Cheol ◽  
Yun Gwan Seon ◽  
Noh Hyun Suk ◽  
Bae Chang Yeon

The estimation of a river discharge by using a mean velocity equation is very convenient and rational. Nevertheless, a research on an equation calculating a mean velocity in a river was not entirely satisfactory after the development of Chezy and Mannings formulas which are uniform equations. In this paper, accordingly, the mean velocity in unsteady flow conditions which are shown loop form properties was estimated by using a new mean velocity formula derived from Chius 2-D velocity formula. The results showed that the proposed method was more accurate in estimating discharge, when compared with the conventional formulas.


2011 ◽  
Vol 15 (5) ◽  
pp. 927-938 ◽  
Author(s):  
Tai Ho Choo ◽  
Sang Kil Park ◽  
Sang Jin Lee ◽  
Ryun Su Oh

1979 ◽  
Vol 44 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Ivan Fořt ◽  
Hans-Otto Möckel ◽  
Jan Drbohlav ◽  
Miroslav Hrach

Profiles of the mean velocity have been analyzed in the stream streaking from the region of rotating standard six-blade disc turbine impeller. The profiles were obtained experimentally using a hot film thermoanemometer probe. The results of the analysis is the determination of the effect of relative size of the impeller and vessel and the kinematic viscosity of the charge on three parameters of the axial profile of the mean velocity in the examined stream. No significant change of the parameter of width of the examined stream and the momentum flux in the stream has been found in the range of parameters d/D ##m <0.25; 0.50> and the Reynolds number for mixing ReM ##m <2.90 . 101; 1 . 105>. However, a significant influence has been found of ReM (at negligible effect of d/D) on the size of the hypothetical source of motion - the radius of the tangential cylindrical jet - a. The proposed phenomenological model of the turbulent stream in region of turbine impeller has been found adequate for values of ReM exceeding 1.0 . 103.


2021 ◽  
Vol 4 ◽  
pp. 100207
Author(s):  
Muhammad Iqbal Basri ◽  
Ida Farida ◽  
Yudy Goysal ◽  
Jumraini Tammasse ◽  
Muhammad Akbar

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 883
Author(s):  
Nargess Moghaddassi ◽  
Seyed Habib Musavi-Jahromi ◽  
Mohammad Vaghefi ◽  
Amir Khosrojerdi

As 180-degree meanders are observed in abundance in nature, a meandering channel with two consecutive 180-degree bends was designed and constructed to investigate bed topography variations. These two 180-degree mild bends are located between two upstream and downstream straight paths. In this study, different mean velocity-to-critical velocity ratios have been tested at the upstream straight path to determine the meander’s incipient motion. To this end, bed topography variations along the meander and the downstream straight path were addressed for different mean velocity-to-critical velocity ratios. In addition, the upstream bend’s effect on the downstream bend was investigated. Results indicated that the maximum scour depth at the downstream bend increased as a result of changing the mean velocity-to-critical velocity ratio from 0.8 to 0.84, 0.86, 0.89, 0.92, 0.95, and 0.98 by, respectively, 1.5, 2.5, 5, 10, 12, and 26 times. Moreover, increasing the ratio increased the maximum sedimentary height by 3, 10, 23, 48, 49, and 56 times. The upstream bend’s incipient motion was observed for the mean velocity-to-critical velocity ratio of 0.89, while the downstream bend’s incipient motion occurred for the ratio of 0.78.


Author(s):  
Armando Félix Quiñonez ◽  
Guillermo E Morales Espejel

This work investigates the transient effects of a single subsurface inclusion over the pressure, film thickness, and von Mises stress in a line elastohydrodynamic lubrication contact. Results are obtained with a fully-coupled finite element model for either a stiff or a soft inclusion moving at the speed of the surface. Two cases analyzed consider the inclusion moving either at the same speed as the mean velocity of the lubricant or moving slower. Two additional cases investigate reducing either the size of the inclusion or its stiffness differential with respect to the matrix. It is shown that the well-known two-wave elastohydrodynamic lubrication mechanism induced by surface features is also applicable to the inclusions. Also, that the effects of the inclusion become weaker both when its size is reduced and when its stiffness approaches that of the matrix. A direct comparison with predictions by the semi-analytical model of Morales-Espejel et al. ( Proc IMechE, Part J: J Engineering Tribology 2017; 231) shows reasonable qualitative agreement. Quantitatively some differences are observed which, after accounting for the semi-analytical model's simplicity, physical agreement, and computational efficiency, may then be considered as reasonable for engineering applications.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1089
Author(s):  
Stefano Scarano ◽  
Luigi Tesio ◽  
Viviana Rota ◽  
Valeria Cerina ◽  
Luigi Catino ◽  
...  

While walking on split-belt treadmills (two belts running at different speeds), the slower limb shows longer anterior steps than the limb dragged by the faster belt. After returning to basal conditions, the step length asymmetry is transiently reversed (after-effect). The lower limb joint dynamics, however, were not thoroughly investigated. In this study, 12 healthy adults walked on a force-sensorised split-belt treadmill for 15 min. Belts rotated at 0.4 m s−1 on both sides, or 0.4 and 1.2 m s−1 under the non-dominant and dominant legs, respectively. Spatiotemporal step parameters, ankle power and work, and the actual mean velocity of the body’s centre of mass (CoM) were computed. On the faster side, ankle power and work increased, while step length and stance time decreased. The mean velocity of the CoM slightly decreased. As an after-effect, modest converse asymmetries developed, fading within 2–5 min. These results may help to decide which belt should be assigned to the paretic and the unaffected lower limb when split-belt walking is applied for rehabilitation research in hemiparesis.


1987 ◽  
Vol 38 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Hussain M. Rizk

The relation between various surface quantities required in hydrodynamic calculations, and the relation between the parallel and perpendicular currents in an arbitrary magnetic toroidal plasma configuration with scalar pressure, are generalized to the case of anisotropic pressure. Magnetic co-ordinates for hydrodynamic equilibria in this configuration are defined. A general expression for the mean velocity of diffusion through a magnetic surface, on the basis of the one-fluid magnetohydrodynamic equation with anisotropic pressure, is derived.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Jean-Luc Menet

The implantation of wind turbines generally follows a wind potential study which is made using specific numerical tools; the generated expenses are only acceptable for great projects. The purpose of the present paper is to propose a simplified methodology for the evaluation of the wind potential, following three successive steps for the determination of (i) the mean velocity, either directly or by the use of the most occurrence velocity (MOV); (ii) the velocity distribution coming from the single knowledge of the mean velocity by the use of a Rayleigh distribution and a Davenport-Harris law; (iii) an appropriate approximation of the characteristic curve of the turbine, coming from only two technical data. These last two steps allow calculating directly the electric delivered energy for the considered wind turbine. This methodology, called the SWEPT approach, can be easily implemented in a single worksheet. The results returned by the SWEPT tool are of the same order of magnitude than those given by the classical commercial tools. Moreover, everybody, even a “neophyte,” can use this methodology to obtain a first estimation of the wind potential of a site considering a given wind turbine, on the basis of very few general data.


Sign in / Sign up

Export Citation Format

Share Document