scholarly journals Glioma Stem Cells: Cell Culture, Markers and Targets for New Combination Therapies

Author(s):  
Candace A. ◽  
Alonzo H.
2019 ◽  
Author(s):  
Mitchell G Lawrence ◽  
Laura H Porter ◽  
Daisuke Obinata ◽  
Shahneen Sandhu ◽  
Luke A Selth ◽  
...  

2015 ◽  
Vol 9 (2) ◽  
pp. 70-77
Author(s):  
Suojun Zhang ◽  
Feng Wan ◽  
Lin Han ◽  
Fei Ye ◽  
Dongsheng Guo ◽  
...  
Keyword(s):  

Oncogene ◽  
2021 ◽  
Author(s):  
Kazuya Fukasawa ◽  
Takuya Kadota ◽  
Tetsuhiro Horie ◽  
Kazuya Tokumura ◽  
Ryuichi Terada ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (6) ◽  
pp. 3042
Author(s):  
Eun Ju Lee ◽  
Khurshid Ahmad ◽  
Shiva Pathak ◽  
SunJu Lee ◽  
Mohammad Hassan Baig ◽  
...  

In recent years, a major rise in the demand for biotherapeutic drugs has centered on enhancing the quality and efficacy of cell culture and developing new cell culture techniques. Here, we report fibronectin (FN) derived, novel peptides fibronectin-based intergrin binding peptide (FNIN)2 (18-mer) and FNIN3 (20-mer) which promote cell adhesion proliferation, and the differentiation of primary cells and stem cells. FNIN2 and 3 were designed based on the in silico interaction studies between FN and its receptors (integrin α5β1, αvβ3, and αIIbβ3). Analysis of the proliferation of seventeen-cell types showed that the effects of FNINs depend on their concentration and the existence of expressed integrins. Significant rhodamine-labeled FNIN2 fluorescence on the membranes of HeLa, HepG2, A498, and Du145 cells confirmed physical binding. Double coating with FNIN2 or 3 after polymerized dopamine (pDa) or polymerized tannic acid (pTA) precoating increased HBEpIC cell proliferation by 30–40 percent, suggesting FNINs potently affect primary cells. Furthermore, the proliferation of C2C12 myoblasts and human mesenchymal stem cells (MSCs) treated with FNINs was significantly increased in 2D/3D culture. FNINs also promoted MSC differentiation into osteoblasts. The results of this study offer a new approach to the production of core materials (e.g., cell culture medium components, scaffolds) for cell culture.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Zetao Chen ◽  
Yihong Chen ◽  
Yan Li ◽  
Weidong Lian ◽  
Kehong Zheng ◽  
...  

AbstractGlioma is one of the most lethal cancers with highly vascularized networks and growing evidences have identified glioma stem cells (GSCs) to account for excessive angiogenesis in glioma. Aberrant expression of paired-related homeobox1 (Prrx1) has been functionally associated with cancer stem cells including GSCs. In this study, Prrx1 was found to be markedly upregulated in glioma specimens and elevated Prrx1 expression was inversely correlated with prognosis of glioma patients. Prrx1 potentiated stemness acquisition in non-stem tumor cells (NSTCs) and stemness maintenance in GSCs, accompanied with increased expression of stemness markers such as SOX2. Prrx1 also promoted glioma angiogenesis by upregulating proangiogenic factors such as VEGF. Consistently, silencing Prrx1 markedly inhibited glioma proliferation, stemness, and angiogenesis in vivo. Using a combination of subcellular proteomics and in vitro analyses, we revealed that Prrx1 directly bound to the promoter regions of TGF-β1 gene, upregulated TGF-β1 expression, and ultimately activated the TGF-β/smad pathway. Silencing TGF-β1 mitigated the malignant behaviors induced by Prrx1. Activation of this pathway cooperates with Prrx1 to upregulate the expression of stemness-related genes and proangiogenic factors. In summary, our findings revealed that Prrx1/TGF-β/smad signal axis exerted a critical role in glioma stemness and angiogeneis. Disrupting the function of this signal axis might represent a new therapeutic strategy in glioma patients.


Sign in / Sign up

Export Citation Format

Share Document