scholarly journals Properties and Numerical Modeling-Simulation of Phase Changes Material

Author(s):  
Pavel Fiala ◽  
Ivo Behunek ◽  
Petr Drexler
2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Junfeng Hou ◽  
Yingqiu Jiang ◽  
Yeqiao Yin ◽  
Weigang Zhang ◽  
Haili Chen ◽  
...  

AbstractMany researches have been conducted to investigate creep behavior of wood; however, the effects of structure on wood creep behavior remain unclear. Therefore, the effects of existence and distribution of earlywood vessel belt on creep behavior of white oak (Quercus alba L.) wood were investigated by dynamic thermal mechanical analyzer (DMA) with double cantilever bending in this study. Besides, a comparative numerical modeling simulation on strain curves of white oak specimens was completed using Burger and Five-parameter model. Results revealed that instantaneous strain and 45-min strain of specimens decreased with increase in the distance between earlywood vessel belt and stress acting surface obviously. Additionally, instantaneous strain and 45-min strain of specimens remarkably increased with increase in temperature from 20 to 80 °C. An obvious bending creep behavior was observed with increase in temperature from 20 to 80 °C. Both Burger and Five-parameter model can effectively simulate the creep behavior of white oak specimens with R2 values greater than 0.90. Furthermore, Five-parameter model illustrated a better fitting effect than Burger model in the final creep stage due to the introduction of a non-linear creep strain growth expression. It concluded that creep behavior of white oak wood strongly depends on the existence and distribution of earlywood vessel belt.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1448
Author(s):  
Joseph Y. Fu ◽  
Xiang’an Yue ◽  
Bo Zhang

In petroleum, geological and environmental science, flow through porous media is conventionally studied complementarily with numerical modeling/simulation and experimental corefloods. Despite advances in numerical modeling/simulation, experimental corefloods with actual samples are still desired for higher-specificity testing or more complex mechanistic studies. In these applications, the lack of advances in physical modeling is very apparent with the available options mostly unchanged for decades (e.g., sandpacks of unconsolidated packing materials, industry-accepted substitutes with fixed/mismatching petrophysical properties such as Berea sandstone). Renewable synthetic porous media with adjustable parameters are the most promising but have not advanced adequately. To address this, a methodology of advanced physical modeling of the fundamental parameters of dominant mineralogy, particle size distribution, packing, and cementation of a target natural porous media is introduced. Based upon the tight physical modeling of these four fundamental parameters, the other derived parameters of interests including wettability, porosity, pore throat size distribution, permeability, and capillary pressure can be concurrently modeled very close as well by further fine-tuning one of the fundamental parameters while holding the rest constant. Through this process, concurrent multi-parametric physical modeling of the primary petrophysical parameters including particle size distribution, wettability, porosity, pore throat size distribution, permeability, capillary pressure behavior in a target sandstone becomes possible.


Author(s):  
J. M. Cowley ◽  
Sumio Iijima

The imaging of detailed structures of crystal lattices with 3 to 4Å resolution, given the correct conditions of microscope defocus and crystal orientation and thickness, has been used by Iijima (this conference) for the study of new types of crystal structures and the defects in known structures associated with fluctuations of stoichiometry. The image intensities may be computed using n-beam dynamical diffraction theory involving several hundred beams (Fejes, this conference). However it is still important to have a suitable approximation to provide an immediate rough estimate of contrast and an evaluation of the intuitive interpretation in terms of an amplitude object.For crystals 100 to 150Å thick containing moderately heavy atoms the phase changes of the electron wave vary by about 10 radians suggesting that the “optimum defocus” theory of amplitude contrast for thin phase objects due to Scherzer and others can not apply, although it does predict the right defocus for optimum imaging.


Sign in / Sign up

Export Citation Format

Share Document