scholarly journals Conserving Endemic Plant Species in Oceanic Island’s Protected Areas

2021 ◽  
Author(s):  
Teresa Mouga

Oceanic islands are known for their high levels of plant diversity, due to disjunct geographical distribution that leads to speciation. The main factors contributing to genetic speciation includes the creation of a barrier within a previously widely distributed taxon and the limited dispersal of seeds, which favours genetic differentiation and, thus, fosters rapid speciation. Plant survival and population fitness vary according to environmental factors and to human interference. This chapter depicts the importance of oceanic islands as biodiversity hotspots, discusses the threats to which endemic plants on islands are exposed, namely climate change, invasive alien species, urbanisation, touristic activities, fire, changes in agriculture practices and collecting pressure. The best practices worldwide to protect endemic plant species in protected areas are also addressed, namely the implementation of prevention and mitigation actions, the programs executed to protect endemic species, and management plans to avoid future threats.

2013 ◽  
Vol 174 (3) ◽  
pp. 276-288 ◽  
Author(s):  
Tod F. Stuessy ◽  
Koji Takayama ◽  
Patricio López-Sepúlveda ◽  
Daniel J. Crawford

Author(s):  
Morgan Shields ◽  
Jean-Marie Tompkins ◽  
David J Saville ◽  
Colin D Meurk ◽  
Stephen Wratten

Vineyards worldwide occupy over 7 million hectares and are typically virtual monocultures, with high and costly inputs of water and agro-chemicals. Understanding and enhancing ecosystem services can reduce inputs and their costs and help satisfy market demands for evidence of more sustainable practices. In this New Zealand work, low-growing, endemic plant species were evaluated for their potential benefits as Service Providing Units (SPUs) or Ecosystem Service Providers (ESPs). The services provided were weed suppression, conservation of beneficial invertebrates, soil moisture retention and microbial activity. The potential Ecosystem Dis-services (EDS) from the selected plant species by hosting the larvae of a key vine moth pest, the light-brown apple moth (Epiphyas postvittana), was also quantified. Questionnaires were used to evaluate winegrowers’ perceptions of the value of and problems associated with such endemic plant species in their vineyards. Growth and survival rates of the 14 plant species, in eight families, were evaluated, with Leptinella dioica (Asteraceae) and Acaena inermis ‘purpurea’ (Rosaceae) having the highest growth rates in terms of area covered and the highest survival rate after 12 months. All 14 plant species suppressed weeds, with Leptinella squalida, Geranium sessiliforum (Geraniaceae), Hebe chathamica (Plantaginaceae), Scleranthus uniflorus (Caryophyllaceae) and L. dioica, each reducing weed cover by > 95%. Plant species also differed in the diversity of arthropod taxa that they supported, with the Shannon Wiener diversity index (H') for these arthropods ranging from 0 to 1.3. G. sessiliforum and Muehlenbeckia axillaris (Polygonaceae) had the highest invertebrate diversity. Density of spiders was correlated with arthropod diversity and G. sessiliflorum and H. chathamica had the highest densities of these arthropods. Several plant species led to higher soil moisture content than in control plots. The best performing species in this context were A. inermis ‘purpurea’ and Lobelia angulata (Lobeliaceae). Soil beneath all plant species had a higher microbial activity than in control plots, with L. dioica being highest in this respect. Survival proportion to the adult stage of the moth pest, E. postvittana, on all plant species was poor (<0.3). When judged by a ranking combining multiple criteria, the most promising plant species were (in decreasing order) G. sessiliflorum, A. inermis ‘purpurea’, H. chathamica, M. axillaris, L. dioica, L. angulata, L. squalida and S. uniflorus. Winegrowers surveyed said that they probably would deploy endemic plants around their vines. This research demonstrates that enhancing plant diversity in vineyards can deliver SPUs, harbour ESPs and therefore deliver ES. The data also shows that growers are willing to follow these protocols, with appropriate advice founded on sound research.


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 192 ◽  
Author(s):  
Anna J. Walentowitz ◽  
Severin D. H. Irl ◽  
Aurelio Jesús Acevedo Rodríguez ◽  
Ángel Palomares-Martínez ◽  
Vanessa Vetter ◽  
...  

Invasive plant species are increasingly altering species composition and the functioning of ecosystems from a local to a global scale. The grass species Pennisetum setaceum has recently raised concerns as an invader on different archipelagos worldwide. Among these affected archipelagos are the Canary Islands, which are a hotspot of endemism. Consequently, conservation managers and stakeholders are interested in the potential spreading of this species in the archipelago. We identify the current extent of the suitable habitat for P. setaceum on the island of La Palma to assess how it affects island ecosystems, protected areas (PAs), and endemic plant species richness. We recorded in situ occurrences of P. setaceum from 2010 to 2018 and compiled additional ones from databases at a 500 m × 500 m resolution. To assess the current suitable habitat and possible distribution patterns of P. setaceum on the island, we built an ensemble model. We projected habitat suitability for island ecosystems and PAs and identified risks for total as well as endemic plant species richness. The suitable habitat for P. setaceum is calculated to cover 34.7% of the surface of La Palma. In open ecosystems at low to mid elevations, where native ecosystems are already under pressure by land use and human activities, the spread of the invader will likely lead to additional threats to endemic plant species. Forest ecosystems (e.g., broadleaved evergreen and coniferous forests) are not likely to be affected by the spread of P. setaceum because of its heliophilous nature. Our projection of suitable habitat of P. setaceum within ecosystems and PAs on La Palma supports conservationists and policymakers in prioritizing management and control measures and acts as an example for the potential threat of this graminoid invader on other islands.


2016 ◽  
Author(s):  
Morgan Shields ◽  
Jean-Marie Tompkins ◽  
David J Saville ◽  
Colin D Meurk ◽  
Stephen Wratten

Vineyards worldwide occupy over 7 million hectares and are typically virtual monocultures, with high and costly inputs of water and agro-chemicals. Understanding and enhancing ecosystem services can reduce inputs and their costs and help satisfy market demands for evidence of more sustainable practices. In this New Zealand work, low-growing, endemic plant species were evaluated for their potential benefits as Service Providing Units (SPUs) or Ecosystem Service Providers (ESPs). The services provided were weed suppression, conservation of beneficial invertebrates, soil moisture retention and microbial activity. The potential Ecosystem Dis-services (EDS) from the selected plant species by hosting the larvae of a key vine moth pest, the light-brown apple moth (Epiphyas postvittana), was also quantified. Questionnaires were used to evaluate winegrowers’ perceptions of the value of and problems associated with such endemic plant species in their vineyards. Growth and survival rates of the 14 plant species, in eight families, were evaluated, with Leptinella dioica (Asteraceae) and Acaena inermis ‘purpurea’ (Rosaceae) having the highest growth rates in terms of area covered and the highest survival rate after 12 months. All 14 plant species suppressed weeds, with Leptinella squalida, Geranium sessiliforum (Geraniaceae), Hebe chathamica (Plantaginaceae), Scleranthus uniflorus (Caryophyllaceae) and L. dioica, each reducing weed cover by > 95%. Plant species also differed in the diversity of arthropod taxa that they supported, with the Shannon Wiener diversity index (H') for these arthropods ranging from 0 to 1.3. G. sessiliforum and Muehlenbeckia axillaris (Polygonaceae) had the highest invertebrate diversity. Density of spiders was correlated with arthropod diversity and G. sessiliflorum and H. chathamica had the highest densities of these arthropods. Several plant species led to higher soil moisture content than in control plots. The best performing species in this context were A. inermis ‘purpurea’ and Lobelia angulata (Lobeliaceae). Soil beneath all plant species had a higher microbial activity than in control plots, with L. dioica being highest in this respect. Survival proportion to the adult stage of the moth pest, E. postvittana, on all plant species was poor (<0.3). When judged by a ranking combining multiple criteria, the most promising plant species were (in decreasing order) G. sessiliflorum, A. inermis ‘purpurea’, H. chathamica, M. axillaris, L. dioica, L. angulata, L. squalida and S. uniflorus. Winegrowers surveyed said that they probably would deploy endemic plants around their vines. This research demonstrates that enhancing plant diversity in vineyards can deliver SPUs, harbour ESPs and therefore deliver ES. The data also shows that growers are willing to follow these protocols, with appropriate advice founded on sound research.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Camille S. Delavaux ◽  
Patrick Weigelt ◽  
Wayne Dawson ◽  
Franz Essl ◽  
Mark van Kleunen ◽  
...  

AbstractPlant colonization of islands may be limited by the availability of symbionts, particularly arbuscular mycorrhizal (AM) fungi, which have limited dispersal ability compared to ectomycorrhizal and ericoid (EEM) as well as orchid mycorrhizal (ORC) fungi. We tested for such differential island colonization within contemporary angiosperm floras worldwide. We found evidence that AM plants experience a stronger mycorrhizal filter than other mycorrhizal or non-mycorrhizal (NM) plant species, with decreased proportions of native AM plant species on islands relative to mainlands. This effect intensified with island isolation, particularly for non-endemic plant species. The proportion of endemic AM plant species increased with island isolation, consistent with diversification filling niches left open by the mycorrhizal filter. We further found evidence of humans overcoming the initial mycorrhizal filter. Naturalized floras showed higher proportions of AM plant species than native floras, a pattern that increased with increasing isolation and land-use intensity. This work provides evidence that mycorrhizal fungal symbionts shape plant colonization of islands and subsequent diversification.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2042 ◽  
Author(s):  
Morgan W. Shields ◽  
Jean-Marie Tompkins ◽  
David J. Saville ◽  
Colin D. Meurk ◽  
Stephen Wratten

Vineyards worldwide occupy over 7 million hectares and are typically virtual monocultures, with high and costly inputs of water and agro-chemicals. Understanding and enhancing ecosystem services can reduce inputs and their costs and help satisfy market demands for evidence of more sustainable practices. In this New Zealand work, low-growing, endemic plant species were evaluated for their potential benefits as Service Providing Units (SPUs) or Ecosystem Service Providers (ESPs). The services provided were weed suppression, conservation of beneficial invertebrates, soil moisture retention and microbial activity. The potential Ecosystem Dis-services (EDS) from the selected plant species by hosting the larvae of a key vine moth pest, the light-brown apple moth (Epiphyas postvittana), was also quantified. Questionnaires were used to evaluate winegrowers’ perceptions of the value of and problems associated with such endemic plant species in their vineyards. Growth and survival rates of the 14 plant species, in eight families, were evaluated, withLeptinella dioica(Asteraceae) andAcaena inermis‘purpurea’ (Rosaceae) having the highest growth rates in terms of area covered and the highest survival rate after 12 months. All 14 plant species suppressed weeds, withLeptinella squalida, Geranium sessiliforum(Geraniaceae),Hebe chathamica(Plantaginaceae),Scleranthus uniflorus(Caryophyllaceae) andL. dioica, each reducing weed cover by >95%. Plant species also differed in the diversity of arthropods that they supported, with the Shannon Wiener diversity index (H′) for these taxa ranging from 0 to 1.3.G. sessiliforumandMuehlenbeckia axillaris(Polygonaceae) had the highest invertebrate diversity. Density of spiders was correlated with arthropod diversity andG. sessiliflorumandH. chathamicahad the highest densities of these arthropods. Several plant species associated with higher soil moisture content than in control plots. The best performing species in this context wereA. inermis‘purpurea’ andLobelia angulata(Lobeliaceae). Soil beneath all plant species had a higher microbial activity than in control plots, withL. dioicabeing highest in this respect. Survival proportion to the adult stage of the moth pest,E. postvittana, on all plant species was poor (<0.3). When judged by a ranking combining multiple criteria, the most promising plant species were (in decreasing order)G. sessiliflorum, A. inermis‘purpurea’,H. chathamica, M. axillaris, L. dioica, L. angulata, L. squalidaandS. uniflorus. Winegrowers surveyed said that they probably would deploy endemic plants around their vines. This research demonstrates that enhancing plant diversity in vineyards can deliver SPUs, harbour ESPs and therefore deliver ES. The data also shows that growers are willing to follow these protocols, with appropriate advice founded on sound research.


2019 ◽  
Vol 24 (2) ◽  
pp. 134-140
Author(s):  
Syamsul Hidayat ◽  
Esti Munawaroh

Bukit Barisan Selatan National Park (BBSNP) has a fairly high biodiversity, including plant species which are categorized as threatened, protected and endemic plants in Sumatra. Information regarding the existence of these plant species is not yet widely available. The purpose of this study was to reveal the existence of threatened, protected and endemic plant species in BBSNP. The research was conducted by exploration methods in three BBSNP areas, namely Kubu Prahu (West Lampung Regency), Sukaraja Atas (Tanggamus Regency) and Rata Agung (Pesisir Barat Regency). A number of target species have been obtained, including 13 threatened plant species, 6 protected plant species, and 7 endemic Sumatran plant species. In addition, three plant species have been included in CITES Appendix 2. The results of the study can be used as a reference for future flora conservation efforts. Keywords: BBSNP, endemic plant, protected, threatened


Oryx ◽  
2012 ◽  
Vol 46 (2) ◽  
pp. 204-212 ◽  
Author(s):  
Chloe J. Hardman ◽  
Sophie Williams ◽  
Bryan Naqqi Manco ◽  
Martin A. Hamilton

AbstractInvasive species are one of the main threats to the loss of global biodiversity. Controlling such species requires a high input of effort and resources and therefore it is important to focus control on areas that will maximize gains for conservation. We present a spatial modelling approach that will help target control efforts. We used presence-only data to develop habitat suitability models for the invasive tree Casuarina equisetifolia and three endemic plant species on the Turks and Caicos Islands in the Caribbean. Substantial overlap was found between suitable areas for the endemics and C. equisetifolia. Evidence for the potential harm that C. equisetifolia could cause to native vegetation was assessed using paired areas with and without invasion. Areas with C. equisetifolia present had lower native plant species richness than areas where it was absent, which suggests a negative effect of invasion on the growth of native plants. No endemic plants were found in areas where C. equisetifolia was present. Based on the data collected we recommend that the three endemic species be categorized as Endangered on the IUCN Red List. By highlighting areas where the endemic plants are found and demonstrating a potential threat to these habitats, we provide a plan for the designation of six Important Plant Areas to promote conservation of these endemic species.


2019 ◽  
Vol 286 (1900) ◽  
pp. 20190136 ◽  
Author(s):  
Jonay Cubas ◽  
Severin D. H. Irl ◽  
Rafael Villafuerte ◽  
Víctor Bello-Rodríguez ◽  
Juan Luis Rodríguez-Luengo ◽  
...  

Islands harbour a spectacular diversity and unique species composition. This uniqueness is mainly a result of endemic species that have evolved in situ in the absence of mammal herbivores. However, island endemism is under severe threat by introduced herbivores. We test the assumption that endemic species are particularly vulnerable to generalist introduced herbivores (European rabbit) using an unprecedented dataset covering an entire island with enormous topographic, climatic and biological diversity (Tenerife, Canary Islands). With increasing endemism, plant species are more heavily browsed by rabbits than non-endemic species with up to 67% of endemics being negatively impacted by browsing, indicating a dramatic lack of adaptation to mammal herbivory in endemics. Ecosystems with high per cent endemism are most heavily browsed, suggesting ecosystem-specific vulnerability to introduced herbivores, even within islands. Protection of global biodiversity caused by disproportionally high endemism on oceanic islands via ecosystem-specific herbivore control and eradication measures is of utmost importance.


Oryx ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 419-430 ◽  
Author(s):  
G. Walters ◽  
E. Ngagnia Ndjabounda ◽  
D. Ikabanga ◽  
J. P. Biteau ◽  
O. Hymas ◽  
...  

AbstractUrban development is an increasing threat to the integrity of formerly remote protected areas, in some cases resulting in their downgrading, downsizing or degazetting. One-quarter of previously remote protected areas are now within 17 km of a city and thus face the threat of urbanization. Here we describe a case of avoided downgrading, downsizing and degazetting of a protected area in the Mondah forest of Gabon, north of Libreville. Since its creation in 1934 the Forêt Classée de la Mondah has been downsized regularly, losing 40% of its area over 80 years. During this time the forest surrounding the Forêt Classée was subject to usage for urban and peri-urban needs, including agriculture, sand extraction, collection of medicinal plants, ceremonies, and housing construction. In 2010 the area was threatened with further downsizing. The presence of narrowly endemic plant species in the area was suspected, and mapping and evaluation of these species was proposed in an effort to maintain the protected area boundaries. Botanical field work, including ex situ conservation measures and participant observation in nearby forest communities, was conducted; 24 endemic species, all threatened by urbanization, were evaluated using the criteria for the IUCN Red List of Threatened Species. The borders of the protected area were maintained because of its role in maintaining irreplaceable habitat for threatened species. The area was renamed Raponda Walker Arboretum in 2012.


Sign in / Sign up

Export Citation Format

Share Document