scholarly journals CdS(Se) and PbS(Se) Quantum Dots with High Room Temperature Quantum Efficiency in the Fluorine-Phosphate Glasses

Author(s):  
Elena Kolobkova ◽  
Nikolay Nikonorov
1999 ◽  
Vol 75 (12) ◽  
pp. 1694-1696 ◽  
Author(s):  
Stephen V. Kershaw ◽  
Mike Burt ◽  
Mike Harrison ◽  
Andrey Rogach ◽  
Horst Weller ◽  
...  

2009 ◽  
Vol 6 (S2) ◽  
pp. S650-S653
Author(s):  
L. Nevou ◽  
J. Mangeney ◽  
M. Tchernycheva ◽  
F. H. Julien ◽  
F. Guillot ◽  
...  

2021 ◽  
Vol 238 ◽  
pp. 111514
Author(s):  
Sergii Golovynskyi ◽  
Oleksandr I. Datsenko ◽  
Luca Seravalli ◽  
Giovanna Trevisi ◽  
Paola Frigeri ◽  
...  

Author(s):  
Xiaoqing Liu ◽  
Wenbo Dai ◽  
Qian Junjie ◽  
Yunxiang Lei ◽  
Miaochang Liu ◽  
...  

A new doped system with pure phosphorescent emission is constructed using four 1-(4-(diphenylamino)phenyl)-2-phenylethan-1-one derivatives containing halogen atoms as the guests and benzophenone as the host. That is, the doped system...


Nanoscale ◽  
2021 ◽  
Author(s):  
Dongdong Yan ◽  
Qionghua Mo ◽  
Shuangyi Zhao ◽  
Wensi Cai ◽  
Zhigang Zang

With a high photoluminescence quantum yield (PLQY) being able to exceed 90% for those prepared by hot injection method, CsPbBr3 quantum dots (QDs) have attracted intensive attentions for white light-emitting...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 690
Author(s):  
Leonardo Ranasinghe ◽  
Christian Heyn ◽  
Kristian Deneke ◽  
Michael Zocher ◽  
Roman Korneev ◽  
...  

Epitaxially grown quantum dots (QDs) are established as quantum emitters for quantum information technology, but their operation under ambient conditions remains a challenge. Therefore, we study photoluminescence (PL) emission at and close to room temperature from self-assembled strain-free GaAs quantum dots (QDs) in refilled AlGaAs nanoholes on (001)GaAs substrate. Two major obstacles for room temperature operation are observed. The first is a strong radiative background from the GaAs substrate and the second a significant loss of intensity by more than four orders of magnitude between liquid helium and room temperature. We discuss results obtained on three different sample designs and two excitation wavelengths. The PL measurements are performed at room temperature and at T = 200 K, which is obtained using an inexpensive thermoelectric cooler. An optimized sample with an AlGaAs barrier layer thicker than the penetration depth of the exciting green laser light (532 nm) demonstrates clear QD peaks already at room temperature. Samples with thin AlGaAs layers show room temperature emission from the QDs when a blue laser (405 nm) with a reduced optical penetration depth is used for excitation. A model and a fit to the experimental behavior identify dissociation of excitons in the barrier below T = 100 K and thermal escape of excitons from QDs above T = 160 K as the central processes causing PL-intensity loss.


MRS Advances ◽  
2016 ◽  
Vol 1 (63-64) ◽  
pp. 4227-4232 ◽  
Author(s):  
S.V. Stefanovsky ◽  
O.I. Stefanovsky ◽  
M.I Kadyko ◽  
V.A. Zhachkin ◽  
L.D. Bogomolova

ABSTRACTGlasses of the series (mol.%) 40 Na2O, (20-x) Al2O3, x Fe2O3, 40 P2O5 were irradiated with 8 MeV electrons to doses equivalent of 0.1, 0.5, and 1.0 MGy and characterized by FTIR spectroscopy and ESR at room temperature. FTIR spectra of all the glasses consist of strong bands due to O-P-O stretching modes in (PO4)3- and (P2O7)4- units at 1000-1200 cm-1, P-O-P stretching modes at 900-950 cm-1 (νas) and 700-750 cm-1 (νs), and bending modes in the PO4 units. The wavenumber range lower 800 cm-1 has some contribution due to stretching modes in MO4 and MO6 (M = Al, Fe) units. Moreover the bands at 3300-3700 cm-1 and 1550-1650 cm-1 due to stretching and bending modes in both absorbed and structurally bound H2O molecules were present. As irradiation dose increases the bands due to stretching and bending modes in water molecules and M-O-H bonds become stronger and are split. No essential changes with increasing dose were observed within the spectral range of stretching modes of the O-P-O and P-O-P bonds. Irradiation yields phosphorus-oxygen hole centers - PO42- (D5) and PO42- (D6), and PO32- ion-radicals (D2) observable in ESR spectra of low-Fe glasses. At x>5 their responses are overlapped with strong broad line due to Fe(III). On the whole, with the increase in iron content the glass structural evolution decrease.


Sign in / Sign up

Export Citation Format

Share Document