scholarly journals A Simple and Highly Structured Procaine Hydrochloride as Fluorescent Quenching Chemosensor for Trace Determination of Mercury Species in Water

Author(s):  
Dyab A. Al-Eryani ◽  
Waqas Ahmad ◽  
Zeinab M. Saigl ◽  
Hassan Alwael ◽  
Saleh O. Bahaffi ◽  
...  
Author(s):  
Hind Hadi ◽  
Gufran Salim

A simple, rapid and sensitive spectrophotmetric method for trace determination of salbutamol (SAL) in aqueous solution and in pharmaceutical preparations is described. The method is based on the diazotization coupling reaction of the intended compound with 4-amino benzoic acid (ABA) in alkaline medium to form an intense orange, water soluble dye that is stable and shows maximum absorption at 410 nm. A graph of absorbance versus concentration indicates that Beer’s law is obeyed over the concentration range of 0.5-30 ppm, with a molar absorbtivity 3.76×104 L.mol-1 .cm-1 depending on the concentration of SAL. The optimum conditions and stability of the colored product have been investigated and the method was applied successfully to the determination of SAL in dosage forms.


2005 ◽  
Vol 61 (7-8) ◽  
pp. 365-370 ◽  
Author(s):  
Bart Tienpont ◽  
Frank David ◽  
Eric Dewulf ◽  
Pat Sandra

Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 189
Author(s):  
Nuša Hojnik ◽  
Olivija Plohl ◽  
Matjaž Finšgar

In this work, different electrodes were employed for the determination of Cr(VI) by the cathodic square‑wave voltammetry (SWV) technique and the square-wave adsorptive stripping voltammetry (SWAdSV) technique in combination with diethylenetriaminepentaacetic acid. Using SWV, a comparison of the analytical performance of the bare glassy carbon electrode (GCE), ex situ electrodes (antimony-film—SbFE, copper-film—CuFE, and bismuth-film—BiFE), and the GCE modified with a new magnetic nanocomposite (MNC) material was performed. First, the MNC material was synthesized, i.e., MNPs@SiO2@Lys, where MNPs stands for magnetic maghemite nanoparticles, coated with a thin amorphous silica (SiO2) layer, which was additionally functionalized with derived lysine (Lys). The crystal structure of the prepared MNCs was confirmed by X-ray powder diffraction (XRD), while the morphology and nano-size of the MNCs were investigated by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM), where TEM was additionally used to observe the MNP core and silica layer thickness. The presence of functional groups of the MNCs was investigated by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and surface analysis was performed by X-ray photoelectron spectroscopy (XPS). The hydrophilicity of the modified electrodes was also tested by static contact angle measurements. Then, MNPs@SiO2@Lys was applied onto the electrodes and used with the SWV and SWAdSV techniques. All electrodes tested with the SWV technique were effective for Cr(VI) trace determination. On the other hand, the SWAdSV technique was required for ultra-trace determination of Cr(VI). Using the SWAdSV technique, it was shown that a combination of ex situ BiFE with the deposited MNPs@SiO2@Lys resulted in excellent analytical performance (LOQ = 0.1 µg/L, a linear concentration range of 0.2–2.0 µg/L, significantly higher sensitivity compared to the SWV technique, an RSD representing reproducibility of 9.0%, and an average recovery of 98.5%). The applicability of the latter system was also demonstrated for the analysis of a real sample.


1999 ◽  
Vol 71 (13) ◽  
pp. 2288-2293 ◽  
Author(s):  
M. Holčapek ◽  
H. Virelizier ◽  
J. Chamot-Rooke ◽  
P. Jandera ◽  
C. Moulin

Sign in / Sign up

Export Citation Format

Share Document