scholarly journals Pretreatment Empty Fruit Bunch of Oil Palm Tree for Improving Enzymatic Saccharification

Author(s):  
Sutikno Sutikno ◽  
Muhammad Kismurtono
2015 ◽  
Vol 77 ◽  
pp. 447-455 ◽  
Author(s):  
Mohamad Faizal Ibrahim ◽  
Suraini Abd-Aziz ◽  
Mohd. Ezreeza Mohamed Yusoff ◽  
Lai Yee Phang ◽  
Mohd Ali Hassan

Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 402 ◽  
Author(s):  
Enis Natasha Noor Arbaain ◽  
Ezyana Kamal Bahrin ◽  
Mohamad Faizal Ibrahim ◽  
Yoshito Ando ◽  
Suraini Abd-Aziz

Washing and drying are common steps for oil palm empty fruit bunch (OPEFB) preparation prior to pretreatment. However, the mass balance of OPEFB preparation proved a major loss of OPEFB during the washing and drying steps. An indigenous fungus, Schizophyllum commune ENN1 was used for delignification of unwashed OPEFB in biological pretreatment without nutrient addition. S. commune ENN1 achieved a maximum lignin removal of 53.8% after 14 days of biological pretreatment of unwashed OPEFB. S. commune ENN1 was able to grow on unwashed OPEFB during biological pretreatment at 55% of moisture content and 5% of oil residue. The highest amount of reducing sugars obtained from OPEFB pretreated by S. commune ENN1 was 230.4 ± 0.19 mg/g with 54% of hydrolysis yield at 96 h. In comparison, the sugar yield of OPEFB pretreated by Phanerochaete chrysosporium was 101.2 ± 0.04 mg/g. This study showed that S. commune ENN1 was feasible to remove lignin of OPEFB through biological pretreatment for enzymatic saccharification without washing and addition of nutrients.


2018 ◽  
Vol 80 (5) ◽  
Author(s):  
Nur Izzatun Nasriah Nasruddin ◽  
Mohd Suzeren Md Jamil ◽  
Ikhwan Zakaria ◽  
Saiful Irwan Zubairi

Carboxylmethyl cellulose (CMC) is extracted from empty fruit bunches of oil palm, which usually comes from industrial waste. The focus of this research is to recycle cellulose from the oil palm tree to produce a food product which is noodles. In this research, the noodles were produced from commercialized CMC (0 – 2%) by using 15 different formulations with different types of flour such as high protein flour, wheat flour and low protein flour which provides an added factor to improve texture. Proximate, physicochemical analysis and sensory test were conducted in order to determine the noodle’s nutrient content, colour, texture and acceptance level among the consumer panels. Based on the proximate analysis, high protein flour produced noodles that were similar to the positive control product which was a commercialized yellow noodles (Mi Kuning Rakyat). Fat, crude fiber, moisture and ash content did not show a significant difference among the formulation tested (p>0.05) because the CMC used and different types of flour with different protein content used did not affect them. The compression test that was used to analyze texture in the physicochemical analysis revealed that Formulation 3 (F3), which was made up from high protein flour and 1% (w/w) CMC, had highest hardness with a mean score of 3.13 ± 0.06N and was significantly different (p<0.05) in comparison with other 14 formulations. This indicates that the use of high protein flour helps in the formation of gluten network in the noodles while an optimum amount of CMC (1.0%) gives a good texture to the noodles. For hedonic test, Formulation 4 (F4), which was made up of 1.5% (w/w) CMC and high protein flour which contain 11.5-13.5% of protein, has a highest acceptance level for consumer due to a good taste and a better texture. Therefore, the integration of high fibrous flour from an empty fruit bunch of oil palm in the form of commerciallized CMC with flours with different protein content into noodle formulation can produce an improved noodles' quality that have higher acceptance level among the consumers. 


Author(s):  
Fahriya Puspita Sari ◽  
Faizatul Falah ◽  
Sita Heris Anita ◽  
Kharisma Panji Ramadhan ◽  
Raden Permana Budi Laksana ◽  
...  

Up scaling of biomass pretreatment from laboratory scale to a bench-scale reactor is one of important steps in the application of the pretreatment for pilot or commercial scale.  This study reports the optimization of pretreatment conditions, namely reaction temperature and time, by one factor at a time (OFAT) method for the enhancement of enzymatic saccharification of oil palm empty fruit bunch (OPEFB). OPEFB was pretreated using high temperature-pressure steam reactor with different reaction temperatures (160, 170, 180, 190, 200 °C) and times (10, 20, 30, 40, 50 min). The effectiveness of the pretreatment was determined based on chemical compositions of untreated and pretreated OPEFB and sugar production from enzymatic saccharification of the pretreated OPEFB.  Solubilized components in the water that generates the steam were also determined. Pretreatment at 180°C for 20 min provides the highest sugar yields (97.30% of glucose yield per initial cellulose and 88.86% of xylose yield per initial hemicellulose). At the optimum condition 34.9% of lignin and 30.75% of hemicellulose were successfully removed from the OPEFB and resulted in 3.43 delignification selectivity. The relationship between severity factor and by-products generated and the sugars obtained after enzymatic saccharification were discussed. The pretreated OPEFB at the optimum condition was also characterized for its morphological characteristic by scanning electron microscopy (SEM) and crystallinity by X-ray diffractometry (XRD) and then compared it with untreated one. The steam pretreatment caused some fiber disruptions with more defined and opened structures and increased of the crystallinity index (CrI) by 2.9% compared to the untreated OPEFB


2016 ◽  
Vol 78 (2) ◽  
Author(s):  
Yanni SUDIYANI ◽  
Kiky C SEMBIRING ◽  
Hendris HENDARSYAH ◽  
Syarifah ALAWIYAH

Abstract Alkaline pretreatment of oil palm empty fruit bunch (EFB) fiber was conducted to improve enzymatic sacchari-fication of EFB fiber for ethanol production.  EFB as one of the major biomass wastes from palm oil industry is a complex lignocellulosic material consists of 41.3 – 46.5% of cellulose, 25.3 – 33.8% of hemicellulose and 27.6 – 32.5% of lignin.  Alkali pretreatment of EFB using NaOH 1 N with temperature at 30 and 600C and reaction times of 30, 60, 90, 120 and 150 minutes were investigated.  Furthermore, the enzymatic saccharification of pretreated EFB was examined. The pretreated substrate was subjected to an enzymatic saccharification using meicelase (10, 20 and 40 FPU/g substrate) at 400C, pH 4.5, 100 rpm for conversion of cellulose and hemicellulose in palm oil EFB to monomeric sugars. The alkali pretreatment of EFB using NaOH can significantly improve the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes.  The results showed that the optimum pretreatment condition was NaOH 1 N at 300C and 90 minutes with the optimum component loss of lignin and hemicellulose was 45.8  % and 35.6  % respectively.  The saccharification of EFB pretreated by NaOH 1 N (at 300C and 90 minutes) for 45 hours and pH 4.5 resulted in optimum saccharification of 63.8 %.  Abstrak Pengolahan awal (pretreatment) serat tandan kosong kelapa sawit (TKKS) dengan basa NaOH telah dilakukan untuk meningkatkan sakarifikasi enzimatik TKKS menjadi etanol.  TKKS merupakan bahan lignoselulosa yang terdiri dari selulosa 41,3– 46,%,  hemicellulosa 25,3 – 33,8% dan lignin 27,6 – 32,5%. Pretreatment TKKS dilakukan dengan NaOH 1 N dengan variasi suhu 300 dan 600C dan variasi waktu 30, 60, 90, 120 dan 150 menit.  Konversi selulosa dan hemiselulosa hasil pretreatment TKKS menjadi gula dilaku-kan dengan sakarifikasi enzimatik menggunakan enzim meiselase (10, 20 dan 40 FPU/g substrat) pada suhu 400C, pH 4,5 dengan shaker 100 rpm.  Pretretament TKKS dengan basa   NaOH   dapat   meningkatkan   sakarifikasi enzimatik dengan berkurangnya lignin dan hemiselulosa secara signifikan dan memudahkan masuknya enzim hidrolitik.  Hasil pretreatment dengan NaOH 1N pada suhu 300C dan 90 menit menunjukkan kondisi optimum untuk penghilangan lignin dan hemiselulosa berturut-turut sebesar 45,8  % and 35,6  %.  Hasil sakarifikasi optimum yaitu 63,8 % dicapai setelah 45 jam sakarifisi pada pH 4,5. 


2016 ◽  
Vol 4 (01) ◽  
Author(s):  
Rakhman Sarwono ◽  
Eka Triwahyuni ◽  
Yosi Aristiawan ◽  
Hendris Hendarsyah Kurniawan ◽  
Trisanti Anindyawati

A serious global energy crisis is thought to be originated from the imbalance rapid consumption and the non-renewable nature of the fossil fuels. A potential, yet promising route for diminising this problem might involve rapid conversion of organic waste and biomass into fuels as an alternative. Oil-palm empty fruit bunch (EFB) is the waste from the oil palm plantation which abundant amount of lignocellulosic EFB biomass. EFB biomass was used as raw material of the second generation of bioethanol production. EFB was converted into ethanol through enzymatic hydrolysis and fermentation simultaneously. Cellulose waste was then turned into glucose by enzymatic saccharification and finally fermented into ethanol. The experiment of 20 liter broth resulted in ethanol concentration of about 7.93% (w/w). Conversion of cellulose into glucose was about 60.02%, and conversion of glucose into ethanol was about 88.44%. Following distillation, ethanol of 1970 mL was obtained at a concentration of 63% (v/v).Keywords: EFB, saccharification, fermentation, glucose, ethanol  ABSTRAKAdanya krisis energi minyak bumi secara global disebabkan oleh ketimpangan antara konsumsi dan produksi minyak bumi. Guna mengimbangi ketimpangan tersebut, maka dilakukan konversi limbah organik dan biomassa menjadi bahan bakar secara tepat dan cepat. Tandan Kosong Sawit (TKS) merupakan limbah dari perkebunan sawit yang melimpah jumlahnya. Penelitian etanol generasi kedua berbahan baku biomassa lignoselulosa dilakukan melalui proses sakarifikasi selulosa menjadi glukosa secara enzimatis dan fermentasi glukosa menjadi etanol. Berdasarkan hasil yang diperoleh dari 20 liter hidrolisat didapat konsentrasi etanol sebesar 7,93% (b/b). Hasil konversi selulosa menjadi glukosa sebesar 60,02%, sedangkan konversi glukosa menjadi etanol sebesar 88,44%. Setelah dilakukan distilasi didapatkan etanol sebanyak 1970 mL dengan konsentrasi 63% (v/v).Kata kunci: TKS, sakarifikasi, fermentasi, glukosa, etanol


2016 ◽  
Vol 78 (2) ◽  
Author(s):  
Yanni SUDIYANI ◽  
Kiky C SEMBIRING ◽  
Hendris HENDARSYAH ◽  
Syarifah ALAWIYAH

Abstract Alkaline pretreatment of oil palm empty fruit bunch (EFB) fiber was conducted to improve enzymatic sacchari-fication of EFB fiber for ethanol production.  EFB as one of the major biomass wastes from palm oil industry is a complex lignocellulosic material consists of 41.3 – 46.5% of cellulose, 25.3 – 33.8% of hemicellulose and 27.6 – 32.5% of lignin.  Alkali pretreatment of EFB using NaOH 1 N with temperature at 30 and 600C and reaction times of 30, 60, 90, 120 and 150 minutes were investigated.  Furthermore, the enzymatic saccharification of pretreated EFB was examined. The pretreated substrate was subjected to an enzymatic saccharification using meicelase (10, 20 and 40 FPU/g substrate) at 400C, pH 4.5, 100 rpm for conversion of cellulose and hemicellulose in palm oil EFB to monomeric sugars. The alkali pretreatment of EFB using NaOH can significantly improve the enzymatic saccharification of EFB by removing more lignin and hemicellulose and increasing its accessibility to hydrolytic enzymes.  The results showed that the optimum pretreatment condition was NaOH 1 N at 300C and 90 minutes with the optimum component loss of lignin and hemicellulose was 45.8  % and 35.6  % respectively.  The saccharification of EFB pretreated by NaOH 1 N (at 300C and 90 minutes) for 45 hours and pH 4.5 resulted in optimum saccharification of 63.8 %.  Abstrak Pengolahan awal (pretreatment) serat tandan kosong kelapa sawit (TKKS) dengan basa NaOH telah dilakukan untuk meningkatkan sakarifikasi enzimatik TKKS menjadi etanol.  TKKS merupakan bahan lignoselulosa yang terdiri dari selulosa 41,3– 46,%,  hemicellulosa 25,3 – 33,8% dan lignin 27,6 – 32,5%. Pretreatment TKKS dilakukan dengan NaOH 1 N dengan variasi suhu 300 dan 600C dan variasi waktu 30, 60, 90, 120 dan 150 menit.  Konversi selulosa dan hemiselulosa hasil pretreatment TKKS menjadi gula dilaku-kan dengan sakarifikasi enzimatik menggunakan enzim meiselase (10, 20 dan 40 FPU/g substrat) pada suhu 400C, pH 4,5 dengan shaker 100 rpm.  Pretretament TKKS dengan basa   NaOH   dapat   meningkatkan   sakarifikasi enzimatik dengan berkurangnya lignin dan hemiselulosa secara signifikan dan memudahkan masuknya enzim hidrolitik.  Hasil pretreatment dengan NaOH 1N pada suhu 300C dan 90 menit menunjukkan kondisi optimum untuk penghilangan lignin dan hemiselulosa berturut-turut sebesar 45,8  % and 35,6  %.  Hasil sakarifikasi optimum yaitu 63,8 % dicapai setelah 45 jam sakarifisi pada pH 4,5. 


Sign in / Sign up

Export Citation Format

Share Document