scholarly journals Effect of Ceramic/Graphite Reinforcement on Dry Sliding Wear Behavior of Copper Metal Matrix Hybrid Composites

Author(s):  
Manvandra Kumar Singh ◽  
Mulkraj Anand ◽  
Pushkar Jha ◽  
Rakesh Kumar Gautam
2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


Author(s):  
P. Ravindran ◽  
M. Jinnah Sheik Mohamed ◽  
S. Joe Patrick Gnanaraj ◽  
M. Appadurai

2017 ◽  
Vol 139 (4) ◽  
Author(s):  
N. Radhika ◽  
R. Raghu

LM13/AlN (10 wt. %) metal matrix composites (MMC) and unreinforced aluminum alloy were produced under stir casting route. Microstructural characteristics were examined on the developed composite using optical microscope. The hardness and tensile test were carried out on both unreinforced aluminum alloy and composite using Vickers hardness tester and universal testing machine (UTM), respectively. Dry sliding wear behavior of the composite and unreinforced aluminum alloy was evaluated using pin-on-disk tribometer based on the design of experiments approach. Experimental parameters such as applied load (10, 20, and 30 N), velocity (1, 2, and 3 m/s), and sliding distance (500, 1000, and 1500 m) were varied for three levels. Signal-to-noise (S/N) ratio analysis, analysis of variance, and regression analysis were also performed. The characterization results showed that reinforcement particles were uniformly distributed in the composite. The hardness and tensile test revealed greater improvement of property in composite compared to that of unreinforced alloy. Wear plot showed that wear was increased with increase in load and decreased with increase in velocity and sliding distance. S/N ratio analysis and analysis of variance (ANOVA) indicated that load has greater significance over the wear rate followed by velocity and sliding distance. Regression analysis revealed greater adequacy with the constructed model in predicting the wear behavior of composite and unreinforced aluminum alloy. Scanning electron microscopy (SEM) analysis is evident that the transition of wear from mild to severe occurred on increase of the load in the composite.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 446
Author(s):  
Pankaj R Jadhav ◽  
B R Sridhar ◽  
Madeva Nagaral ◽  
Jayasheel I Harti ◽  
V Auradi

The present works manages readiness of the composites by mix stirring method. A356 amalgam 4 wt. % of B4C and A356-4 wt. % of Graphite and A356-4% B4C-4% Graphite hybrid composites were readied. To enhance the wetting and uniform conveyance of the particles, fortifications were preheated to a temperature of 500 Degree Celsius. The arranged MMCs are subjected to examining SEM instrument which affirms the homogenous uniform appropriation of smaller scale B4C and Graphite particles in the lattice combination without agglomeration. The wear protection of arranged composites was examined by performing dry sliding wear test utilizing DUCOM made stick on plate mechanical assembly. The tests were directed at a consistent heap of 3kg and sliding separation of 4000m over a speed of 100, 200 and 300 rpm. So also the other arrangement of investigations were led at consistent sped of 300 rpm and sliding separation of 4000m and with changing heap of 1kg, 2kg, and 3kg. The outcomes demonstrated that the wear protections of the composites were improved than the lattice material.   


Sign in / Sign up

Export Citation Format

Share Document