scholarly journals Introductory Chapter: Assessment and Conservation of Genetic Diversity in Plant Species

Author(s):  
Mohamed A. El-Esawi
1996 ◽  
Vol 10 (3) ◽  
pp. 796-805 ◽  
Author(s):  
Mary Jo W. Godt ◽  
Bart R. Johnson ◽  
J.L. Hamrick

2018 ◽  
Vol 11 ◽  
pp. 194008291881390
Author(s):  
Natalie Breidenbach ◽  
Sri Rahayu ◽  
Iskandar Z. Siregar ◽  
Ulfah J. Siregar ◽  
Hamzah ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
◽  
Aline Fugeray-Scarbel ◽  
Catherine Bastien ◽  
Mathilde Dupont-Nivet ◽  
Stéphane Lemarié

The present study is a transversal analysis of the interest in genomic selection for plant and animal species. It focuses on the arguments that may convince breeders to switch to genomic selection. The arguments are classified into three different “bricks.” The first brick considers the addition of genotyping to improve the accuracy of the prediction of breeding values. The second consists of saving costs and/or shortening the breeding cycle by replacing all or a portion of the phenotyping effort with genotyping. The third concerns population management to improve the choice of parents to either optimize crossbreeding or maintain genetic diversity. We analyse the relevance of these different bricks for a wide range of animal and plant species and sought to explain the differences between species according to their biological specificities and the organization of breeding programs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


Diversity ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 421
Author(s):  
Luciana Cristina Vitorino ◽  
Mateus Neri Oliveira Reis ◽  
Layara Alexandre Bessa ◽  
Ueric José Borges de Souza ◽  
Fabiano Guimarães Silva

The anthropization of the landscape of the Cerrado biome that has occurred over the past few decades has fragmented its natural environments, impacting the connectivity of the plant populations and altering their gene flow. Plant species may also reduce population size in response to sub-optimal climatic and environmental conditions, and observed distribution patterns may align with theoretical schemes, such as the center–periphery model, that is, it is possible that populations on the edge have lower genetic diversity than center populations, theoretically submitted to environmental conditions closer to the optimum. In this context, we evaluate whether the genetic diversity and inbreeding coefficients of Cerrado plant species are affected by landscape features and climate characteristics, and in particular, if the distribution of the genetic diversity of these plants is consistent with the center–periphery model. To do this, we conducted a literature search for genetic studies of Cerrado plant populations using Scopus, Web of Science, and Scielo databases and the species found were used as a proxy to explore patterns throughout the biome. The data were analyzed using generalized linear mixed models (GLMM) and multiple matrix regressions (MMRRs) to evaluate the effects of landscape features and climatic variables on the observed (HO) and expected heterozygosity (HE), allelic richness (AR) and inbreeding (Fis) patterns of the local populations. The landscape was evaluated in terms of the percentage land cover of agriculture (AG), forestry (FO), remnant vegetation (RV), urban areas (UA), pasture (PA), and water (WA) within buffers of 1 km, 3 km, and 5 km around the study populations. We analyzed 121 populations of 31 plant species. The GLMMs showed that HO was affected by FO regardless of buffer size, while HE was also affected by FO, but also by WA and UA. AR was affected by WA and UA in all three buffer zones while the Fis was affected by FO and AU. The MMRRs showed that WA may affect HO, HE, and Fis within the 1 km buffer, while FO affects HO and UA affects AR within the 5 km buffer. In the case of the 1 km and 3 km buffers, however, the geographic distance between populations was identified as a factor determining the genetic diversity and inbreeding indices, indicating that isolation by distance may be an important factor defining the breeding patterns of the Cerrado plant populations. The GLMMs and MMRRs also showed that the mean annual temperature (MAT) and, to a lesser extent, isothermality (ISO) can explain the variation in genetic diversity observed in the Cerrado plant populations. We also found that the center–periphery model fits the distribution pattern observed in most of the species evaluated, including Annona crassiflora,Annona coriacea, Copaifera langsdorffii, and Eugenia dysenterica. Our results indicate that changes in the climate and the landscape of Brazilian Cerrado must be considered carefully to guarantee minimizing the impacts of these processes on the genetic diversity of Cerrado plant species and ensuring the long-term conservation of these species in this biome.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Ana Lúcia A. Segatto ◽  
Maikel Reck-Kortmann ◽  
Caroline Turchetto ◽  
Loreta B. Freitas

2010 ◽  
Vol 37 (9) ◽  
pp. 1730-1739 ◽  
Author(s):  
Olivier Honnay ◽  
Hans Jacquemyn ◽  
Kris Nackaerts ◽  
Peter Breyne ◽  
Kris Van Looy

Sign in / Sign up

Export Citation Format

Share Document