scholarly journals Gypsum/Desulfurization Fly Ash/Activated Shale Char/Claystone of Şırnak with Popped Biochar Composite Granules as Fire Inhibitor for Fire Hazard Risk in Forest Management

Author(s):  
Yıldırım Ismail Tosun
2021 ◽  
Vol 13 (10) ◽  
pp. 5369
Author(s):  
Rajesh Khatakho ◽  
Dipendra Gautam ◽  
Komal Raj Aryal ◽  
Vishnu Prasad Pandey ◽  
Rajesh Rupakhety ◽  
...  

Natural hazards are complex phenomena that can occur independently, simultaneously, or in a series as cascading events. For any particular region, numerous single hazard maps may not necessarily provide all information regarding impending hazards to the stakeholders for preparedness and planning. A multi-hazard map furnishes composite illustration of the natural hazards of varying magnitude, frequency, and spatial distribution. Thus, multi-hazard risk assessment is performed to depict the holistic natural hazards scenario of any particular region. To the best of the authors’ knowledge, multi-hazard risk assessments are rarely conducted in Nepal although multiple natural hazards strike the country almost every year. In this study, floods, landslides, earthquakes, and urban fire hazards are used to assess multi-hazard risk in Kathmandu Valley, Nepal, using the Analytical Hierarchy Process (AHP), which is then integrated with the Geographical Information System (GIS). First, flood, landslide, earthquake, and urban fire hazard assessments are performed individually and then superimposed to obtain multi-hazard risk. Multi-hazard risk assessment of Kathmandu Valley is performed by pair-wise comparison of the four natural hazards. The sum of observations concludes that densely populated areas, old settlements, and the central valley have high to very high level of multi-hazard risk.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Wei Wang ◽  
Yuntao Liang

Fire hazard-risk area in small coal pits can be found in the southern part of the Shigetai Coal Mine, a close-distance coal seam mining sector in the Shendong mining area, which is susceptible to the risk of harmful toxic gas intrusion, seriously threatening the safety of mining around the working surface. Aiming at this problem, a numerical model representing the mining activity on the close-distance coal seams was established to simulate the movement pattern of overlying strata and the development process of fractures based on the horizontal stress “normalization” technology. Also, the principal air-leak passageways were detected with the SF6 tracer analysis. On this basis, the influencing pattern of harmful toxic gas intruding into the working surface can be comprehensively analyzed, providing a basis for effectively preventing and controlling gas intrusion disasters. The research findings show that, after a lower coal seam has been mined, the caving zone ranges from 73 m to 94 m in height, and the fractured zone tends to develop all the way to the surface. Furthermore, shear fractures are the major passageways for air leakage, and the occurrence of gas intrusion disasters is basically taking place at the same time frame as the occurrence of roof weighting. Meanwhile, the harmful toxic gas intrudes the working surface through the fractures on the security coal pillars and shear fractures on the overlying strata. To prevent intrusion disasters from occurring, the applications of inorganic foaming and curing materials for filling were studied in combination with the actual engineering conditions. The construction grounds in sections where the fire hazard-risk area in small coal pits have not been stripped were drilled, and filling materials were poured into the goaf to create an isolation belt. As can be observed from the applied areas, constructing isolation belts to block the major air-leak passageways can effectively prevent the harmful toxic gases from intruding into the working surface, ensuring the safety of mining on the working surface.


2016 ◽  
Vol 25 (2) ◽  
pp. eRC09 ◽  
Author(s):  
Ana Martin ◽  
Brigite Botequim ◽  
Tiago M. Oliveira ◽  
Alan Ager ◽  
Francesco Pirotti

Aim of study: This study was conducted to support fire and forest management planning in eucalypt plantations based on economic, ecological and fire prevention criteria, with a focus on strategic prioritisation of fuel treatments over time. The central objective was to strategically locate fuel treatments to minimise losses from wildfire while meeting budget constraints and demands for wood supply for the pulp industry and conserving carbon.Area of study: The study area was located in Serra do Socorro (Torres Vedras, Portugal, covering ~1449 ha) of predominantly Eucalyptus globulus Labill forests managedcultivated for pulpwood by The Navigator Company.Material and methods: At each of four temporal stages (2015-2018-2021-2024) we simulated: (1) surface and canopy fuels, timber volume (m3 ha-1) and carbon storage (Mg ha-1); (2) fire behaviour characteristics, i.e. rate of spread (m min-1), and flame length (m), with FlamMap fire modelling software; (3) optimal treatment locations as determined by the Landscape Treatment Designer (LTD).Main results: The higher pressure of fire behaviour in the earlier stages of the study period triggered most of the spatial fuel treatments within eucalypt plantations in a juvenile stage. At later stages fuel treatments also included shrublands areas. The results were consistent with observations and simulation results that show high fire hazard in juvenile eucalypt stands.Research highlights: Forest management planning in commercial eucalypt plantations can potentially accomplish multiple objectives such as augmenting profits and sustaining ecological assets while reducing wildfire risk at landscape scale. However, limitations of simulation models including FlamMap and LTD are important to recognise in studies of long term wildfire management strategies.Keywords: Eucalypt plantations; Fire hazard; FlamMap; fuel treatment optimisation; Landscape Treatment Designer; wildfire risk management.


2000 ◽  
Vol 134 (1-3) ◽  
pp. 163-176 ◽  
Author(s):  
William A. Thompson ◽  
Ilan Vertinsky ◽  
Hans Schreier ◽  
Bruce A. Blackwell

2014 ◽  
Vol 23 (4) ◽  
pp. 585 ◽  
Author(s):  
Colin J. Ferster ◽  
Nicholas C. Coops

Effective wildfire management in the wildland–urban interface (WUI) depends on timely data on forest fuel loading to inform management decisions. Mobile personal communication devices, such as smartphones, present new opportunities to collect data in the WUI, using sensors within the device – such as the camera, global positioning system (GPS), accelerometer, compass, data storage and networked data transfer. In addition to providing a tool for forest professionals, smartphones can also facilitate engaging other members of the community in forest management as they are now available to a growing proportion of the general population. Approaches where the public participates in the data-collection process (inspired by citizen science) may be beneficial for fire hazard issues. This research note demonstrates a smartphone application for measuring forest fuel loading in the WUI by forestry professionals and non-professionals, and evaluates the quality of the collected data. Smartphones and their associated applications may provide new tools for collecting forest structural data in the WUI, but forest managers need to ensure that measurement protocols provide the required precision for analysis and enforce the logical consistency of observations made by a diverse set of data collectors, and that sufficient training is provided. If these recommendations are followed, we conclude that data acquired by volunteers in collaborative projects through smartphone applications can be of acceptable quality to help inform forest management decisions.


2021 ◽  
Vol 24 (1) ◽  
pp. 85-92
Author(s):  
Vasyl Martynenko

The paper deals with the ecological and fire situation in the forest ecosystem of the “Drevlyansky” nature reserve. The relevance of this study is that every year Ukraine's forests suffer from fires that destroy significant areas, and forests with radiation pollution suffer from fires the most. The purpose of the study was to investigate the impact of radiation pollution on the fire situation in the forest ecosystem of the reserve. The main task was to distribute the area of the reserve according to the level of radiation pollution and fire hazard classes with and without taking into account radiation pollution. To achieve the results, the area of the forest ecosystem of the Reserve was distributed according to the levels of radiation pollution. The average fire hazard class between 2008 and 2018 ranged from 2.02 to 2.06, which in turn improves the fire situation. However, since the territory of the reserve has been exposed to radiation pollution, the distribution of areas by fire hazard classes has undergone changes between the years of forest management. Thus, the fire situation, taking into account radiation pollution, has deteriorated compared to the area that was not exposed to radiation pollution, and between 2008 and 2018 it improved and amounts to 1.16 and 1.17, respectively. Consequently, the distribution of area by fire hazard classes depends not only on the level of radiation pollution, but also on the taxational specifications (land category, and in plantations it depends on the type of forest vegetation conditions, age, and tree species). The results of the fire that occurred on the territory of the reserve in the spring of 2020 are shown, along with a map of the fire danger of the forest fund of the “Drevlyansky” nature reserve in 2018. The prospect of further research is to re-conduct a study of the level of radiation pollution and to carry out actual measurements every 10 years, without using calculation methods. This will provide a more reliable distribution of forest fund areas by fire hazard classes and affect the planning of strategic tasks to prevent fires in the reserve


2021 ◽  
Vol 118 (49) ◽  
pp. e2019073118
Author(s):  
Bodie Cabiyo ◽  
Jeremy S. Fried ◽  
Brandon M. Collins ◽  
William Stewart ◽  
Jun Wong ◽  
...  

Responsible stewardship of temperate forests can address key challenges posed by climate change through sequestering carbon, producing low-carbon products, and mitigating climate risks. Forest thinning and fuel reduction can mitigate climate-related risks like catastrophic wildfire. These treatments are often cost prohibitive, though, in part because of low demand for low-value wood “residues.” Where treatment occurs, this low-value wood is often burned or left to decay, releasing carbon. In this study, we demonstrate that innovative use of low-value wood, with improved potential revenues and carbon benefits, can support economical, carbon-beneficial forest management outcomes in California. With increased demand for wood residues, forest health–oriented thinning could produce up to 7.3 million (M) oven-dry tonnes of forest residues per year, an eightfold increase over current levels. Increased management and wood use could yield net climate benefits between 6.4 and 16.9 million tonnes of carbon dioxide equivalent (M tCO2e) per year when considering impacts from management, wildfire, carbon storage in products, and displacement of fossil carbon-intensive alternatives over a 40-y period. We find that products with durable carbon storage confer the greatest benefits, as well as products that reduce emissions in hard-to-decarbonize sectors like industrial heat. Concurrently, treatment could reduce wildfire hazard on 4.9 M ha (12.1 M ac), a quarter of which could experience stand-replacing effects without treatment. Our results suggest that innovative wood use can support widespread fire hazard mitigation and reduce net CO2 emissions in California.


Author(s):  
L. L. Sutter ◽  
G. R. Dewey ◽  
J. F. Sandell

Municipal waste combustion typically involves both energy recovery as well as volume reduction of municipal solid waste prior to landfilling. However, due to environmental concerns, municipal waste combustion (MWC) has not been a widely accepted practice. A primary concern is the leaching behavior of MWC ash when it is stored in a landfill. The ash consists of a finely divided fly ash fraction (10% by volume) and a coarser bottom ash (90% by volume). Typically, MWC fly ash fails tests used to evaluate leaching behavior due to high amounts of soluble lead and cadmium species. The focus of this study was to identify specific lead bearing phases in MWC fly ash. Detailed information regarding lead speciation is necessary to completely understand the leaching behavior of MWC ash.


1997 ◽  
Vol 9 (6) ◽  
pp. 541-565 ◽  
Author(s):  
Cheryl R. Killingsworth ◽  
Francesca Alessandrini ◽  
G. G. Krishna Murthy ◽  
Paul J. Catalano ◽  
Joseph D. Paulauskis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document