scholarly journals Innovative wood use can enable carbon-beneficial forest management in California

2021 ◽  
Vol 118 (49) ◽  
pp. e2019073118
Author(s):  
Bodie Cabiyo ◽  
Jeremy S. Fried ◽  
Brandon M. Collins ◽  
William Stewart ◽  
Jun Wong ◽  
...  

Responsible stewardship of temperate forests can address key challenges posed by climate change through sequestering carbon, producing low-carbon products, and mitigating climate risks. Forest thinning and fuel reduction can mitigate climate-related risks like catastrophic wildfire. These treatments are often cost prohibitive, though, in part because of low demand for low-value wood “residues.” Where treatment occurs, this low-value wood is often burned or left to decay, releasing carbon. In this study, we demonstrate that innovative use of low-value wood, with improved potential revenues and carbon benefits, can support economical, carbon-beneficial forest management outcomes in California. With increased demand for wood residues, forest health–oriented thinning could produce up to 7.3 million (M) oven-dry tonnes of forest residues per year, an eightfold increase over current levels. Increased management and wood use could yield net climate benefits between 6.4 and 16.9 million tonnes of carbon dioxide equivalent (M tCO2e) per year when considering impacts from management, wildfire, carbon storage in products, and displacement of fossil carbon-intensive alternatives over a 40-y period. We find that products with durable carbon storage confer the greatest benefits, as well as products that reduce emissions in hard-to-decarbonize sectors like industrial heat. Concurrently, treatment could reduce wildfire hazard on 4.9 M ha (12.1 M ac), a quarter of which could experience stand-replacing effects without treatment. Our results suggest that innovative wood use can support widespread fire hazard mitigation and reduce net CO2 emissions in California.

2019 ◽  
Vol 11 (19) ◽  
pp. 5276 ◽  
Author(s):  
Leonel J.R. Nunes ◽  
Catarina I.R. Meireles ◽  
Carlos J. Pinto Gomes ◽  
Nuno M.C. Almeida Ribeiro

With climate change being a certainty, which today is probably the biggest challenge humanity is facing, and also accepting that greenhouse gas emissions are the main cause accelerating climate change, there is an urgent need to find solutions that lead to the mitigation of the already intense, and in some cases, even violent, effects. Forests can most easily work as carbon sinks. However, it is convenient to analyze the residence time of this carbon in forests, as this residence time will depend on the type of forest management used. This paper aims to analyze forest management models from a perspective of carbon residence time in forests, dividing the models into three types: carbon conservation, carbon storage, and carbon substitution. Carbon conservation models are those models in which the amounts of carbon stored only replace the carbon released, mainly by the industrial use of raw materials. Carbon storage models are models that foster the growth of forest areas to ensure that the amount of carbon stored grows, and where the ratio clearly leans towards sequestration and storage. Carbon substitution models are models that move towards the substitution of fossil carbon by renewable carbon, thus contributing to the creation of a neutral flow.


2019 ◽  
Vol 12 (3) ◽  
pp. 133-166 ◽  
Author(s):  
Alexander Gradel ◽  
Gerelbaatar Sukhbaatar ◽  
Daniel Karthe ◽  
Hoduck Kang

The natural conditions, climate change and socio-economic challenges related to the transformation from a socialistic society towards a market-driven system make the implementation of sustainable land management practices in Mongolia especially complicated. Forests play an important role in land management. In addition to providing resources and ecosystem functions, Mongolian forests protect against land degradation.We conducted a literature review of the status of forest management in Mongolia and lessons learned, with special consideration to halting deforestation and degradation. We grouped our review into seven challenges relevant to developing regionally adapted forest management systems that both safeguard forest health and consider socio-economic needs. In our review, we found that current forest management in Mongolia is not always sustainable, and that some practices lack scientific grounding. An overwhelming number of sources noticed a decrease in forest area and quality during the last decades, although afforestation initiatives are reported to have increased. We found that they have had, with few exceptions, only limited success. During our review, however, we found a number of case studies that presented or proposed promising approaches to (re-)establishing and managing forests. These studies are further supported by a body of literature that examines how forest administration, and local participation can be modified to better support sustainable forestry. Based on our review, we conclude that it is necessary to integrate capacity development and forest research into holistic initiatives. A special focus should be given to the linkages between vegetation cover and the hydrological regime.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3295
Author(s):  
Maciej Dzikuć ◽  
Rafał Miśko ◽  
Szymon Szufa

The development of urban transport in recent years has become one of the most important issues related to improving the quality of life in Polish cities. Excessive pollution in the form of greenhouse gases and other harmful substances from buses affects people’s health as does the excessive noise. This article analysed the measures being taken to reduce emissions, and the results showed that it is possible to reduce CO2 emissions by more than 28 thousand megagrams (Mg) per annum. Policymakers in Poland should consider limiting electricity generation through coal combustion and recognize, at least temporarily, CNG/LNG-powered buses as low-carbon rolling stock and co-finance their purchase and the necessary infrastructure.


Biochar ◽  
2021 ◽  
Author(s):  
Carlos Rodriguez-Franco ◽  
Deborah S. Page-Dumroese

AbstractThere are thousands of abandoned mine land (AML) sites in the U.S. that need to be restored to reduce wind and water erosion, provide wildlife forage, shade streams, and improve productivity. Biochar created from woody biomass that would normally be burned in slash piles can be applied to soil to improve soil properties and is one method to restore AML soil productive capacity. Using this ‘waste’ biomass for biochar and reclamation activities will reduce wildfire risk, air pollution from burning, and particulates released from burning wood. Biochar has the potential to improve water quality, bind heavy metals, or decrease toxic chemical concentrations, while improving soil health to establish sustainable plant cover, thereby preventing soil erosion, leaching, or other unintended, negative environmental consequences. Using forest residues to create biochar also helps reduce woody biomass and improves forest health and resilience. We address concerns surrounding organic and inorganic contaminants on the biochar and how this might affect its’ efficacy and provide valuable information to increase restoration activities on AMLs using biochar alone or in combination with other organic amendments. Several examples of AML biochar restoration sites initiated to evaluate short- and long-term above- and belowground ecosystem responses are presented.


2017 ◽  
Vol 30 (1) ◽  
pp. 191-214 ◽  
Author(s):  
Meryl Jagarnath ◽  
Tirusha Thambiran

Because current emissions accounting approaches focus on an entire city, cities are often considered to be large emitters of greenhouse gas (GHG) emissions, with no attention to the variation within them. This makes it more difficult to identify climate change mitigation strategies that can simultaneously reduce emissions and address place-specific development challenges. In response to this gap, a bottom-up emissions inventory study was undertaken to identify high emission zones and development goals for the Durban metropolitan area (eThekwini Municipality). The study is the first attempt at creating a spatially disaggregated emissions inventory for key sectors in Durban. The results indicate that particular groups and economic activities are responsible for more emissions, and socio-spatial development and emission inequalities are found both within the city and within the high emission zone. This is valuable information for the municipality in tailoring mitigation efforts to reduce emissions and address development gaps for low-carbon spatial planning whilst contributing to objectives for social justice.


2021 ◽  
Vol 245 ◽  
pp. 01020
Author(s):  
Aixia Xu ◽  
Xiaoyong Yang

The input-output method is employed in this study to measure the total carbon emission of the logistics industry in Guangdong. The findings revealed that the carbon emission of direct energy consumption of the logistics industry in Guangdong is far above the actual carbon emissions, the second and third industries play a significant role in carbon emission of indirect energy consumption in the logistics industry in Guangdong. To reduce energy consumption and carbon emissions in Guangdong, it is not only important to control the carbon emissions in the logistics industry, but strengthen carbon emission detection in relevant industries, improve the energy utilization rate and reduce emissions in other industries, and move towards low-carbon sustainable development.


2014 ◽  
Vol 962-965 ◽  
pp. 1709-1712
Author(s):  
Meng Lu ◽  
Yan Qing Nie

By means of field investigation, this paper found the factors that restricting the development of Qinhuangdao port logistics low carbonization. The factors are: the planning layout port is not reasonable; related policies and regulations of low carbon lag; port infrastructure is weak and low carbon logistics technology level need to be improved; the lack of talented person for port of low carbon logistics. This paper put forward the measures and suggestions on Qinhuangdao port logistics low carbonization: striving to optimize the layout; enhancement of infrastructure capacity; the introduction of technology to reduce emissions, improvement of the level of low carbon development; enhancement of port operation management and operation ability; improvement of low carbon consciousness of port industry practitioners; government and industry play an active role in Qinhuangdao port logistics low carbonization.


Author(s):  
Jack K. Winjum ◽  
Robert K. Dixon ◽  
Paul E. Schroeder

Sign in / Sign up

Export Citation Format

Share Document