Multiple Matrix Cracking of Fiber-Reinforced Ceramic-Matrix Composites during Operation
In the field of civil aviation, the most important factor is safety quality. Improving aircraft performance can increase flight safety factor in some degree. To improve the thrust-to-weight ratio of aircraft engines and reduce fuel consumption, the fundamental measure is to increase the turbine inlet temperature of engines, while hot-section components is directly related to the maximum allowable operating temperature. Ceramic-matrix composite (CMC) material is one of the important candidate materials for aeroengine. To improve CMCs in aircraft engine application, it is necessary to investigate the failure mechanism of CMCs and also failure models. However, during operation, matrix multiple cracking occurs with fiber debonding and fracture, which affects the flight safety and failure risk. In this chapter, the multiple matrix cracking of fiber-reinforced CMCs is investigated using energy balance approach.