scholarly journals Multiple Matrix Cracking of Fiber-Reinforced Ceramic-Matrix Composites during Operation

Author(s):  
Chengzheng Zhu

In the field of civil aviation, the most important factor is safety quality. Improving aircraft performance can increase flight safety factor in some degree. To improve the thrust-to-weight ratio of aircraft engines and reduce fuel consumption, the fundamental measure is to increase the turbine inlet temperature of engines, while hot-section components is directly related to the maximum allowable operating temperature. Ceramic-matrix composite (CMC) material is one of the important candidate materials for aeroengine. To improve CMCs in aircraft engine application, it is necessary to investigate the failure mechanism of CMCs and also failure models. However, during operation, matrix multiple cracking occurs with fiber debonding and fracture, which affects the flight safety and failure risk. In this chapter, the multiple matrix cracking of fiber-reinforced CMCs is investigated using energy balance approach.

1993 ◽  
Vol 115 (1) ◽  
pp. 58-63 ◽  
Author(s):  
J. W. Brockmeyer

Hot gas path components of current generation, liquid fuel rocket engine turbopumps (T/P) are exposed to severe thermal shock, extremely high heat fluxes, corrosive atmospheres, and erosive flows. These conditions, combined with high operating stresses, are severely degrading to conventional materials. Advanced turbomachinery (T/M) applications will impose harsher demands on the turbine materials. These demands include higher turbine inlet temperature for improved performance and efficiency, lower density for improved thrust-to-weight ratio, and longer life for reduced maintenance of re-usable engines. Conventional materials are not expected to meet these demands, and fiber-reinforced ceramic matrix composites (FRCMC) have been identified as candidate materials for these applications. This paper summarizes rocket engine T/M needs, reviews the properties and capabilities of FRCMC, identifies candidate FRCMC materials and assesses their potential benefits, and summarizes the status of FRCMC component development with respect to advanced liquid fuel rocket engine T/M applications.


Author(s):  
Jerry W. Brockmeyer

Hot gas path components of current generation, liquid fuel rocket engine turbopumps (T/P) are exposed to severe thermal shock, extremely high heat fluxes, corrosive atmospheres and erosive flows. These conditions, combined with high operating stresses, are severely degradative to conventional materials. Advanced turbomachinery (T/M) applications will impose harsher demands on the turbine materials. These demands include higher turbine inlet temperature for improved performance and efficiency, lighter weight for improved thrust-to-weight ratio, and longer life for reduced maintenance of re-usable engines. Conventional materials are not expected to meet these demands, and fiber-reinforced ceramic matrix composites (FRCMC) have been identified as candidate materials for these applications. This paper summarizes rocket engine T/M needs, reviews the properties and capabilities of FRCMC, identifies candidate FRCMC materials and assesses their potential benefits, and summarizes the status of FRCMC component development with respect to advanced liquid fuel rocket engine T/M applications.


2015 ◽  
Vol 83 (1) ◽  
Author(s):  
Lucas R. Hansen ◽  
Anthony M. Waas

During progressive cracking of cross-ply ceramic matrix composites (CMCs), load is transferred from the fiber to the matrix in the longitudinal (0 deg) ply via shear through a compliant interphase layer, also referred to as the coating. In the material system of interest, this coating has significant thickness relative to the fiber diameter. The damage process in the cross-ply CMC is observed to be as follows: (1) elastic deformation, (2) cracking of the transverse plies, (3) matrix cracking within the longitudinal plies, (4) failure of longitudinal fibers, and (5) pullout of the cracked fibers from the matrix. In this paper, the focus is on the longitudinal (0 deg) ply. Existing shear-lag models do not fully represent either the stress transfer through the coating or the true accumulations of shear and normal stresses in the matrix. In the current study, a model is developed that takes into account both of these factors to provide a more accurate, analytical representation of the stress distribution and progressive damage accumulation in a longitudinal CMC ply.


2012 ◽  
Vol 569 ◽  
pp. 132-135
Author(s):  
Yu Guo Wang ◽  
Bin Lin

Fiber-reinforced ceramic matrix composites are considered to be difficult-to-machine materials, its machining especially forming machining is very difficult. The silica fiber reinforced silica composite is studied by grinding experiment in this paper. The surface morphology of the specimens are analyzed by scanning electron microscopy, and the grinding mechanism of the composite is also analyzed. Grinding depth and feed speed is separately changed to study the grinding force. The influence of the blunt wheel on surface morphology and geometric accuracy of the specimen after grinding is explored. This research may be helpful to improve the machining quality of silica fiber reinforced silica composite.


Author(s):  
Kenneth Hatton ◽  
Dennis Landini ◽  
Stan Hemstad ◽  
R. Craig Robinson

Honeywell Advanced Composites Inc. (ACI) has been working with OEM’s to develop, fabricate, and test ceramic matrix composite (CMC) materials for partial and full replacement of hot section turbine engine components. Using Chemical Vapor Infiltration (CVI) technology, silicon carbide fiber reinforced silicon carbide matrix parts, such as full annular combustion liners and inserts for leading edges on nozzle guide vanes have been fabricated and tested.


Sign in / Sign up

Export Citation Format

Share Document