scholarly journals Drug Repurposing (DR): An Emerging Approach in Drug Discovery

Author(s):  
Mithun Rudrapal ◽  
Shubham J. Khairnar ◽  
Anil G. Jadhav

Drug repurposing (DR) (also known as drug repositioning) is a process of identifying new therapeutic use(s) for old/existing/available drugs. It is an effective strategy in discovering or developing drug molecules with new pharmacological/therapeutic indications. In recent years, many pharmaceutical companies are developing new drugs with the discovery of novel biological targets by applying the drug repositioning strategy in drug discovery and development program. This strategy is highly efficient, time saving, low-cost and minimum risk of failure. It maximizes the therapeutic value of a drug and consequently increases the success rate. Thus, drug repositioning is an effective alternative approach to traditional drug discovery process. Finding new molecular entities (NME) by traditional or de novo approach of drug discovery is a lengthy, time consuming and expensive venture. Drug repositioning utilizes the combined efforts of activity-based or experimental and in silico-based or computational approaches to develop/identify the new uses of drug molecules on a rational basis. It is, therefore, believed to be an emerging strategy where existing medicines, having already been tested safe in humans, are redirected based on a valid target molecule to combat particularly, rare, difficult-to-treat diseases and neglected diseases.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.



Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2694
Author(s):  
Elyas Mohammadi ◽  
Rui Benfeitas ◽  
Hasan Turkez ◽  
Jan Boren ◽  
Jens Nielsen ◽  
...  

Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug–target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches.



Author(s):  
Saravanan Jayaram ◽  
Emdormi Rymbai ◽  
Deepa Sugumar ◽  
Divakar Selvaraj

The traditional methods of drug discovery and drug development are a tedious, complex, and costly process. Target identification, target validation; lead identification; and lead optimization are a lengthy and unreliable process that further complicates the discovery of new drugs. A study of more than 15 years reports that the success rate in the discovery of new drugs in the fields of ophthalmology, cardiovascular, infectious disease, and oncology to be 32.6%, 25.5%, 25.2% and 3.4%, respectively. A tedious and costly process coupled with a very low success rate makes the traditional drug discovery a less attractive option. Therefore, an alternative to traditional drug discovery is drug repurposing, a process in which already existing drugs are repurposed for conditions other than which were originally intended. Typical examples of repurposed drugs are thalidomide, sildenafil, memantine, mirtazapine, mifepristone, etc. In recent times, several databases have been developed to hasten drug repurposing based on the side effect profile, the similarity of chemical structure, and target site. This work reviews the pivotal role of drug repurposing in drug discovery and the databases currently available for drug repurposing.



2020 ◽  
Vol 20 ◽  
Author(s):  
Priti Jain ◽  
Shreyans K Jain ◽  
Munendra Jain

Background: Traditional drug discovery is time consuming, costly, and risky process. Owing to the large investment, excessive attrition, and declined output; drug repurposing has become a blooming approach for the identification and development of new therapeutics. The method has gained momentum in the past few years and has resulted in many excellent discoveries. Industries are resurrecting the failed and shelved drugs to save time and cost. The process accounts for approximately 30% of the new US Food and Drug Administration approved drugs and vaccines in recent years. Methods: A systematic literature search using appropriate keywords were made to identify articles discussing the different strategies being adopted for repurposing and various drugs that have been/are being repurposed. Results: This review aims to describe the comprehensive data about the various strategies (Blinded search, computational approaches, and experimental approaches) used for the repurposing along with success case studies (treatment for orphan diseases, neglected tropical disease, neurodegenerative diseases, and drugs for pediatric population). It also inculcates an elaborated list of more than 100 drugs that have been repositioned, approaches adopted, and their present clinical status. We have also attempted to incorporate the different databases used for computational repurposing. Conclusion: The data presented is proof that drug repurposing is a prolific approach circumventing the issues poised by conventional drug discovery approaches. It is a highly promising approach and when combined with sophisticated computational tools it also carries high precision. The review would help researches in prioritizing the drug-repositioning method much needed to flourish the drug discovery research.



2021 ◽  
Vol 8 ◽  
Author(s):  
Biswa Mohan Sahoo ◽  
B. V. V. Ravi Kumar ◽  
J. Sruti ◽  
Manoj Kumar Mahapatra ◽  
Bimal K. Banik ◽  
...  

Drug repurposing is also termed as drug repositioning or therapeutic switching. This method is applied to identify the novel therapeutic agents from the existing FDA approved clinically used drug molecules. It is considered as an efficient approach to develop drug candidates with new pharmacological activities or therapeutic properties. As the drug discovery is a costly, time-consuming, laborious, and highly risk process, the novel approach of drug repositioning is employed to increases the success rate of drug development. This strategy is more advantageous over traditional drug discovery process in terms of reducing duration of drug development, low-cost, highly efficient and minimum risk of failure. In addition to this, World health organization declared Coronavirus disease (COVID-19) as pandemic globally on February 11, 2020. Currently, there is an urgent need to develop suitable therapeutic agents for the prevention of the outbreak of COVID-19. So, various investigations were carried out to design novel drug molecules by utilizing different approaches of drug repurposing to identify drug substances for treatment of COVID-19, which can act as significant inhibitors against viral proteins. It has been reported that COVID-19 can infect human respiratory system by entering into the alveoli of lung via respiratory tract. So, the infection occurs due to specific interaction or binding of spike protein with angiotensin converting enzyme-2 (ACE-2) receptor. Hence, drug repurposing strategy is utilized to identify suitable drugs by virtual screening of drug libraries. This approach helps to determine the binding interaction of drug candidates with target protein of coronavirus by using computational tools such as molecular similarity and homology modeling etc. For predicting the drug-receptor interactions and binding affinity, molecular docking study and binding free energy calculations are also performed. The methodologies involved in drug repurposing can be categorized into three groups such as drug-oriented, target-oriented and disease or therapy-oriented depending on the information available related to quality and quantity of the physico-chemical, biological, pharmacological, toxicological and pharmacokinetic property of drug molecules. This review focuses on drug repurposing strategy applied for existing drugs including Remdesivir, Favipiravir, Ribavirin, Baraticinib, Tocilizumab, Chloroquine, Hydroxychloroquine, Prulifloxacin, Carfilzomib, Bictegravir, Nelfinavir, Tegobuvir and Glucocorticoids etc to determine their effectiveness toward the treatment of COVID-19.



Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 51-59
Author(s):  
Porkodi Ayyar ◽  
Umamaheswari Subramanian

Drug repurposing refers to finding new indications for existing drugs. The paradigm shift from traditional drug discovery to drug repurposing is driven by the fact that new drug pipelines are getting dried up because of mounting Research & Development (R&D) costs, long timeline for new drug development, low success rate for new molecular entities, regulatory hurdles coupled with revenue loss from patent expiry and competition from generics. Anaemic drug pipelines along with increasing demand for newer effective, cheaper, safer drugs and unmet medical needs call for new strategies of drug discovery and, drug repurposing seems to be a promising avenue for such endeavours. Drug repurposing strategies have progressed over years from simple serendipitous observations to more complex computational methods in parallel with our ever-growing knowledge on drugs, diseases, protein targets and signalling pathways but still the knowledge is far from complete. Repurposed drugs too have to face many obstacles, although lesser than new drugs, before being successful.



2022 ◽  
Author(s):  
Fatemeh Hosseini ◽  
Mehrdad Azin ◽  
Hamideh Ofoghi ◽  
Tahereh Alinejad

Unfortunately, to date, there is no approved specific antiviral drug treatment against COVID-19. Due to the costly and time-consuming nature of the de novo drug discovery and development process, in recent days, the computational drug repositioning method has been highly regarded for accelerating the drug-discovery process. The selection of drug target molecule(s), preparation of an approved therapeutics agent library, and in silico evaluation of their affinity to the subjected target(s) are the main steps of a molecular docking-based drug repositioning process, which is the most common computational drug re-tasking process. In this chapter, after a review on origin, pathophysiology, molecular biology, and drug development strategies against COVID-19, recent advances, challenges as well as the future perspective of molecular docking-based drug repositioning for COVID-19 are discussed. Furthermore, as a case study, the molecular docking-based drug repurposing process was planned to screen the 3CLpro inhibitor(s) among the nine Food and Drug Administration (FDA)-approved antiviral protease inhibitors. The results demonstrated that Fosamprenavir had the highest binding affinity to 3CLpro and can be considered for more in silico, in vitro, and in vivo evaluations as an effective repurposed anti-COVID-19 drug.



Author(s):  
Natalie K. Boyd ◽  
Chengwen Teng ◽  
Christopher R. Frei

Drug repurposing, or identifying new uses for existing drugs, has emerged as an alternative to traditional drug discovery processes involving de novo synthesis. Drugs that are currently approved or under development for non-antibiotic indications may possess antibiotic properties, and therefore may have repurposing potential, either alone or in combination with an antibiotic. They might also serve as “antibiotic adjuvants” to enhance the activity of certain antibiotics.



2016 ◽  
Vol 16 (19) ◽  
pp. 2069-2077 ◽  
Author(s):  
Niteshkumar U. Sahu ◽  
Prashant S. Kharkar


2020 ◽  
Vol 20 (19) ◽  
pp. 1651-1660
Author(s):  
Anuraj Nayarisseri

Drug discovery is one of the most complicated processes and establishment of a single drug may require multidisciplinary attempts to design efficient and commercially viable drugs. The main purpose of drug design is to identify a chemical compound or inhibitor that can bind to an active site of a specific cavity on a target protein. The traditional drug design methods involved various experimental based approaches including random screening of chemicals found in nature or can be synthesized directly in chemical laboratories. Except for the long cycle design and time, high cost is also the major issue of concern. Modernized computer-based algorithm including structure-based drug design has accelerated the drug design and discovery process adequately. Surprisingly from the past decade remarkable progress has been made concerned with all area of drug design and discovery. CADD (Computer Aided Drug Designing) based tools shorten the conventional cycle size and also generate chemically more stable and worthy compounds and hence reduce the drug discovery cost. This special edition of editorial comprises the combination of seven research and review articles set emphasis especially on the computational approaches along with the experimental approaches using a chemical synthesizing for the binding affinity in chemical biology and discovery as a salient used in de-novo drug designing. This set of articles exfoliates the role that systems biology and the evaluation of ligand affinity in drug design and discovery for the future.



Sign in / Sign up

Export Citation Format

Share Document