scholarly journals Biological Synthesis of Nanoparticles Using Endophytic Microorganisms: Current Development

Author(s):  
Omar Messaoudi ◽  
Mourad Bendahou

Nanotechnology is a new emerging interdisciplinary approach created by pairing of engineering, chemical, and biological approaches. This technology produces nanoparticles using different methods of traditional physical and chemical processes; however, the outlook in this field of research is to use ecofriendly, nontoxic, and clean methods for the synthesis of nanoparticles. Biological entities, such as plants, bacteria, fungi, algae, yeast, and actinomycetes, are the best candidate to achieve this goal. Among the biological route, those involve endophtic microorganisms to reduce metallic ions into nanoparticles. This method is considered as an attractive option and can open a new horizon on the interface of biology and nanotechnology. The present chapter highlights the latest research about endophytic microorganisms and their application in the synthesis of nanoparticles, as well as the mechanisms involved in the formation of nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ghalia Batool Alvi ◽  
Muhammad Shahid Iqbal ◽  
Mazen Mohammed Saeed Ghaith ◽  
Abdul Haseeb ◽  
Bilal Ahmed ◽  
...  

AbstractNanotechnology deals with the synthesis of materials and particles at nanoscale with dimensions of 1–100 nm. Biological synthesis of nanoparticles, using microbes and plants, is the most proficient method in terms of ease of handling and reliability. Core objectives of this study were to synthesize metallic nanoparticles using selenium metal salt from citrus fruit extracts, their characterization and evaluation for antimicrobial activities against pathogenic microbes. In methodology, simple green method was implicated using sodium selenite salt solution and citrus fruit extracts of Grapefruit and Lemon as precursors for synthesizing nanoparticles. Brick red color of the solution indicated towards the synthesis of selenium nanoparticles (SeNPs). Nanoparticle’s initial characterization was done by UV–Vis Spectrophotometry and later FTIR analysis and DLS graphs via Zetasizer were obtained for the confirmation of different physical and chemical parameters of the nanoparticles. Different concentrations of SeNPs were used for antimicrobial testing against E. coli, M. luteus, B. subtilis and K. pneumoniae comparative with the standard antibiotic Ciprofloxacin. SeNPs possessed significant antimicrobial activities against all the bacterial pathogens used. Conclusively, SeNPs made from citrus fruits can act as potent antibacterial candidates.



Author(s):  
Hoor Shumail ◽  
Shah Khalid ◽  
Izhar Ahmad ◽  
Haroon Khan ◽  
Surriya Amin ◽  
...  

Background: Nature has the potential to reduce metal salts to their relative nanoparticles. Traditionally physical and chemical methods were used for the synthesis of nanoparticles but due to use of toxic chemicals, non-ecofriendly methods and other harmful effects, green chemistry approaches are now employed for synthesizing nanoparticles which are basically the most cost effective, ecofriendly and non-hazardous methods. Objective: In this review we aimed to valuate and study the details of various mechanisms used for green synthesis of silver nanoparticles from plants, their size, shape and potential applications. Results: Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical application since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Results: Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical application since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Conclusion: Silver nanoparticles have been studied as an important research area due to their specific and tunable properties and their application in the field of biomedicine such as tissue and tumor imaging and drug delivery. These nanoparticles can be further investigated to find out their antimicrobial potential in cell lines and animal models.



2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Mihir Herlekar ◽  
Siddhivinayak Barve ◽  
Rakesh Kumar

In the recent years, nanotechnology has emerged as a state-of-the-art and cutting edge technology with multifarious applications in a wide array of fields. It is a very broad area comprising of nanomaterials, nanotools, and nanodevices. Amongst nanomaterials, majority of the research has mainly focused on nanoparticles as they can be easily prepared and manipulated. Physical and chemical methods are conventionally used for the synthesis of nanoparticles; however, due to several limitations of these methods, research focus has recently shifted towards the development of clean and eco-friendly synthesis protocols. Magnetic nanoparticles constitute an important class of inorganic nanoparticles, which find applications in different areas by virtue of their several unique properties. Nevertheless, in comparison with biological synthesis protocols for noble metal nanoparticles, limited study has been carried out with respect to biological synthesis of magnetic nanoparticles. This review focuses on various studies outlining the novel routes for biosynthesis of these nanoparticles by plant resources along with outlining the future scope of work in this area.



2015 ◽  
Vol 14 (05n06) ◽  
pp. 1550017 ◽  
Author(s):  
Nidhi Singh ◽  
Prasenjit Saha ◽  
Karthik Rajkumar ◽  
Jayanthi Abraham

Selenium and silver have unique properties and great potential in the field of physics, chemistry and biology. The bacterial strain Pseudomonas fluorescens was isolated by using Kings'B media and Cladosporium sp. was isolated by using potato dextrose agar for soil sample collected from Andhra Pradesh coal field of Singareni. Rapid formation of stable silver and selenium nanoparticles ( AgNPs ; SeNPs ) were observed on exposure of the microbial culture with solution of silver nitrate and sodium selenite. The nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). Further, the biologically synthesized nanoparticles were found to have efficient antimicrobial activity against pathogenic bacteria, thus implying significance of the present study in production of biomedical products. AgNPs synthesized by P. fluorescens showed more antimicrobial activity than Cladosporium sp. As the AgNPs are much smaller in size, they showed effective antimicrobial activity when compared to that of SeNPs which showed less effective antimicrobial activity in both P. fluorescens and Cladosporium sp. The microbes are capable of reducing both AgNPs and SeNPs . The biological synthesis of nanoparticles is useful when compared with other physical and chemical methods as they are eco-friendly.



2017 ◽  
Vol 9 (6) ◽  
pp. 06022-1-06022-6
Author(s):  
A. G. Barylka ◽  
◽  
R. M. Balabai ◽  


1989 ◽  
Vol 54 (1) ◽  
pp. 117-135
Author(s):  
Oldřich Pytela ◽  
Vítězslav Zima

The method of conjugate deviations based on the regression analysis has been suggested for construction of a new nucleophilicity scale. This method has been applied to a set of 28 nucleophiles participating in 47 physical and chemical processes described in literature. The two-parameter nucleophilicity scale obtained represents-in the parameter denoted as ND-the general tendency to form a bond to an electrophile predominantly on the basis of the orbital interaction and-in the parameter denoted as PD-the ability to interact with a centre similar to the proton (basicity). The linear correlation equation involving the ND, PD parameters and the charge appears to be distinctly better than the most significant relations used. The correlation dependences have the physico-chemical meaning. From the position of individual nucleophiles in the space of the ND and PD parameters, some general conclusions have been derived about the factors governing the reactivity of nucleophiles.



Author(s):  
Andrew Steane

The life of an ordinary tree is described, in terms of the main physical and chemical processes: carbon capture by photosynthesis; entropy and energy; moisture. The information expressed in the tree comes partly from the DNA and partly from the sunlight. The tree does not push upwards from the ground, but solidifies the air.



ACS Photonics ◽  
2019 ◽  
Vol 6 (12) ◽  
pp. 3039-3056 ◽  
Author(s):  
Vanessa N. Peters ◽  
Srujana Prayakarao ◽  
Samantha R. Koutsares ◽  
Carl E. Bonner ◽  
Mikhail A. Noginov


Sign in / Sign up

Export Citation Format

Share Document