scholarly journals Periodic Nanophotonic Structures-Based Light Management for Solar Energy Harvesting

2020 ◽  
Author(s):  
Nikhil Deep Gupta

Solar energy has always been an obvious choice for solving the energy issues for the humans for centuries. The two most popular choices, out of many, to harness this infinite source of energy are: solar cells and photoelectrochemical cells. Although both these techniques are quite attractive, they have inherent limitations for tapping all of the incident photons. Maximizing the absorption of incident photons to produce maximum possible electrical output is always the main impetus for the researchers working to streamline these two techniques and making them compatible with existing sources of electrical energy. It has been well established that the light trapping in the solar cells and photoelectrochemical cells can play a vital role in improving their performance. To design light harvesting structures for both these applications, periodic nanophotonic structures have demonstrated stupendous results and shown that they have the real potential to enhance their performance. The chapter, in this regard, presents and reviews the current and historical aspects of the light harvesting structures for these two interesting applications and also discusses about the future of the research to further the performance of these large-area solar-to-electrical conversion transducers.

2007 ◽  
Vol 17 (30) ◽  
pp. 3205 ◽  
Author(s):  
Isabelle Rodriguez ◽  
Fernando Ramiro-Manzano ◽  
Pedro Atienzar ◽  
Jose Manuel Martinez ◽  
Francisco Meseguer ◽  
...  

Author(s):  
Dieter F. Ihrig ◽  
H. Michael Heise ◽  
Ulrich Brunert ◽  
Martin Poschmann ◽  
Ruediger Kuckuk ◽  
...  

Biomass production by micro-algae is by a factor of 10 more efficient than by plants, by which an economic process of solar energy harvesting can be established. Owing to the very low dry mass content of algal suspensions, the most promising way of their conversion to a high exoergic and transportable form of energy is the anaerobic production of biogas. On account of this, we are developing such processes including a micro-algal reactor, methods for micro-algal cell separation and biomass treatment, and a subsequent two-stage anaerobic fermentation process. First results from parts of this development work are shown. The continuous feeding of the anaerobic process over several weeks using micro-algal biomass is discussed in more details. The biogas is composed of methane, higher hydrocarbons, carbon dioxide, and hydrogen sulphide. Using steam reforming, it can be converted to a mixture of carbon dioxide and hydrogen. These gases can be separated using membrane technology. It is possible to form a closed carbon cycle by recycling the carbon dioxide to the micro-algal process. The transportable and storable hydrogen product is a valuable energy source and can be converted to electrical energy and heat using fuel cells. The simulation of such a process will be explicated.


Author(s):  
V. V. Kuvshinov ◽  
E. A. Bekirov ◽  
E. V. Guseva

In the presented work, the possibility of using photovoltaic silicon panels with a double-sided arrangement of solar cells on the front and back sides is presented. With a lack of space for placing solar panels, these types of modules can significantly increase the generation of electrical energy. Equipping photovoltaic systems with rechargeable batteries contributes to a more rational consumption of electrical energy, while energy storage systems significantly increase the efficiency of solar generating systems. The proposed designs are intended to increase the power characteristics of solar energy converters in the winter months, in the presence of snow or when using reflective surfaces on road surfaces. The results of the experimental studies have shown a significant efficiency of the proposed designs, as well as an increase in the total generation of electrical energy. With the development of the global technical potential and a significant increase in the production of power plants for solar energy, a new opportunity has emerged to use combined solar plants for photovoltaic conversion of the flux of incident solar radiation. At the Department of Renewable Energy Sources and Electrical Systems and Networks at Sevastopol State University, at the site of the Institute of Nuclear Energy and Industry, a photovoltaic installation was developed and studied, consisting of two side silicon solar cells and energy storage systems. The article presents the results of experimental and theoretical studies, presents diagrams, drawings and graphs of various characteristics of the FSM-110D photovoltaic panel and storage batteries. The research results show the increased efficiency of the proposed installation, as well as a good possibility of using the presented photovoltaic systems to provide them with autonomous and individual consumers living in the Crimean region and the city of Sevastopol.


2015 ◽  
Vol 730 ◽  
pp. 173-177
Author(s):  
Yu Wen Tang

Solar energy is an inexhaustible and renewable energy without environmental pollution. Solar energy can be used in three kinds of forms: solar thermal energy, photochemical conversion and photovoltaic power generation. Among these, the final form of photovoltaic power generation is electricity which can be transported, applied and stored conveniently. On the basis of photovoltaic effect, solar cell is developed as a new technology to convert light energy into electrical energy using semiconductor. Up to now the two key problems of the development of solar cells are how to improve the conversion efficiency and reduce cost. Therefore, the material and production technology used for solar cells are discussed based on improving conversion efficiency in this article.


MRS Advances ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 153-158 ◽  
Author(s):  
Ahmed Zayan ◽  
Thomas E. Vandervelde

ABSTRACTWith the rising interest in oceanic monitoring, climate awareness and surveillance, the scientific community need for developing autonomous, self-sustaining Unmanned Underwater Vehicles (UUVs) increased as well. Limitations on the size, maneuverability, power consumption, and available on-site maintenance of these UUVs make a number of proposed technologies to power them harder to implement than others; solar energy harvesting stands as one of the more promising candidates to address the need for a long-term energy supply for UUVs due to its relatively small size and ease of deployment. Studies show research groups focusing on the use of Si cells (amorphous and crystalline), InGaP, and more recently Organic Photovoltaics to convert the attenuated solar spectrum under shallow depths (no deeper than 9.1 m) into electrical energy used or stored by the UUV’s power management system (P. P. Jenkins et al. 2014; Walters et al. 2015). In our study, we consider the ternary compound In1-xTlxP that allows for varying the quantum efficiency of the cell, and by extension the overall harvesting efficiency of the system by altering the Tl content (x) in the compound. In1-xTlxP on InP is a low strain system since the compound exhibits very little change in its lattice constant with changing Tl content due to the comparable atomic size and forces of In and Tl allowing for relatively easy growth on InP substrates. The study focuses on studying the spectral response and comparing the performance of an optimized single junction In1-xTlxP cells to In1-yGayP cells while accounting for the optical losses of the solar irradiance underwater for various depths.


Author(s):  
Stephen Salter ◽  
Graham Sortino ◽  
John Latham

Following the review by Latham et al . (Latham et al . 2008 Phil. Trans. R. Soc. A 366 ) of a strategy to reduce insolation by exploiting the Twomey effect, the present paper describes in outline the rationale and underlying engineering hardware that may bring the strategy from concept to operation. Wind-driven spray vessels will sail back and forth perpendicular to the local prevailing wind and release micron-sized drops of seawater into the turbulent boundary layer beneath marine stratocumulus clouds. The combination of wind and vessel movements will treat a large area of sky. When residues left after drop evaporation reach cloud level they will provide many new cloud condensation nuclei giving more but smaller drops and so will increase the cloud albedo to reflect solar energy back out to space. If the possible power increase of 3.7 W m −2 from double pre-industrial CO 2 is divided by the 24-hour solar input of 340 W m −2 , a global albedo increase of only 1.1 per cent will produce a sufficient offset. The method is not intended to make new clouds. It will just make existing clouds whiter. This paper describes the design of 300 tonne ships powered by Flettner rotors rather than conventional sails. The vessels will drag turbines resembling oversized propellers through the water to provide the means for generating electrical energy. Some will be used for rotor spin, but most will be used to create spray by pumping 30 kg s −1 of carefully filtered water through banks of filters and then to micro-nozzles with piezoelectric excitation to vary drop diameter. The rotors offer a convenient housing for spray nozzles with fan assistance to help initial dispersion. The ratio of solar energy reflected by a drop at the top of a cloud to the energy needed to make the surface area of the nucleus on which it has grown is many orders of magnitude and so the spray quantities needed to achieve sufficient global cooling are technically feasible.


Sign in / Sign up

Export Citation Format

Share Document