scholarly journals HSPs under Abiotic Stresses

Author(s):  
Noor ul Haq ◽  
Samina N. Shakeel

Different organisms respond to the altered environmental conditions by different ways. Heat shock proteins’ (HSPs) production is one among the different defense mechanisms which defend the photosystem II and thylokoid membrane in plants. There are different types of HSPs based on their size, that is, high molecular weight (60–100 kDa) and low molecular weight heat shock proteins (15–30 kDa). Small HSPs are further classified based on their localization and role in different sub-cellular organelles. Cp-sHSPs are the chloroplast-specific small HSPs that protect the photosystem II and thylokoid membrane. A model to control the Cp-sHSPs in Chenopodium album has been put forward in this chapter. According to this model, Cp-sHSPs of Chenopodium album are created in cytoplasm and are moved toward chloroplast. The transit peptide is removed on reaching to the target sub-cellular organelle, that is, chloroplast and the premature Cp-sHSPs are converted into mature ones which have multiple roles under different abiotic stress conditions.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1263 ◽  
Author(s):  
Maxim Shevtsov ◽  
Zsolt Balogi ◽  
William Khachatryan ◽  
Huile Gao ◽  
László Vígh ◽  
...  

Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.


1991 ◽  
Vol 96 (4) ◽  
pp. 1038-1047 ◽  
Author(s):  
Amy E. DeRocher ◽  
Kenneth W. Helm ◽  
Lisa M. Lauzon ◽  
Elizabeth Vierling

2021 ◽  
Vol 21 ◽  
Author(s):  
Noriko Yamada ◽  
Rie Matsushima-Nishiwaki ◽  
Kaido Kobayashi ◽  
Shota Takahata ◽  
Hidenori Toyoda ◽  
...  

Abstract: Heat shock proteins (HSPs) play an essential role as molecular chaperones in proteostasis. Small HSPs are a group of low-molecular-weight HSPs in the range of 12-43 kDa and are classified as HSPB. Within the ten members of the family, HSPB1 (HSP27), HSPB5 (B-crystallin), HSPB6 (HSP20), and HSPB8 (HSP22) ubiquitously exist in various tissues, including liver tissue. These small HSPs undergo phosphorylation as a post-translational modification, and their functions are modulated. Hepatocellular carcinoma (HCC) is one of the most frequent cancers and the fourth leading cause of cancer-related death worldwide. HSPs play a cytoprotective role as molecular chaperones. Thus, HSPB has been generally considered to protect HCC cells and help the progression of HCC. On the other hand, recent studies from our laboratories have demonstrated suppressive roles of phospho-HSPB1, HSPB6, and HSPB8 in progression of HCC. These findings may provide a basis for a novel defense system by HSPB against HCC progression. This review focuses on the cellular functions of HSPB in HCC and summarizes the current research.


1990 ◽  
Vol 96 (3) ◽  
pp. 413-418
Author(s):  
C. Haass ◽  
U. Klein ◽  
P.M. Kloetzel

We have investigated the developmental expression of the small heat-shock proteins (hsps) during embryogenesis and in adult flies by immunocytology using an antibody that specifically identifies the small hsps. Antibody staining of unstressed early embryos reveals a predominantly cytoplasmic, homogeneous distribution of the small hsps throughout the embryo. At 6h of development small hsp expression can be identified in large, neuroblast-like cells within the extended germ band and in the brain of the embryo. During germ band contraction these cells appear to migrate to the midline where they align pairwise in a segmental pattern. After germ band contraction is complete a high level of small hsp expression can be observed in the midline glia (MECs) and in a cluster of six non-neuronal cells within the midline. In contrast to several other genes that are known to be important for embryogenesis and are expressed in the central nervous system (CNS) of embryos, CNS-specific expression of the small hsps is not restricted to the embryo but is also observed in the adult fly. In adult flies strong small hsp expression is observed in the brain, the thoracic ganglion and the leg nerves. Since the small hsps seem to be expressed predominantly in the glia of the nervous system, our data suggest a protective or stabilizing function of the small hsps within the nervous system during normal fly development, which is independent of the stress response.


Genome ◽  
1993 ◽  
Vol 36 (6) ◽  
pp. 1111-1118 ◽  
Author(s):  
Nelson Marmiroli ◽  
Angelo Pavesi ◽  
Gabriella Di Cola ◽  
Hans Hartings ◽  
Giovanna Raho ◽  
...  

In vitro translation of mRNAs prepared from barley (Hordeum vulgare) seedlings (cv. Onice) exposed at 40 °C directed the synthesis of major heat shock proteins (HSPs) with molecular masses of 80–90, 70, 42 and 16–22 kDa. A cDNA library prepared from the 40 °C mRNAs and screened by differential hybridization led to the isolation of heat shock specific sequences. One of these (Hv hsp18) was confirmed by hybrid-arrested and hybrid-released translation as encoding for an 18-kDa HSP. The barley hsp18 sequence has an open reading frame encoding a 160 amino acid residue 18-kDa protein that is 63% identical to wheat 16.9-kDa HSP (clone C5-8), 54% identical to soybean (Glycine max) 17.5-kDa HSP, and 49% identical to Arabidopsis thaliana 17.6-kDa HSP. Lower similarities were found with class II plant small HSPs such as soybean 17.9-kDa HSP (27%), Pisum sativum 17.7-kDa HSP (30%), wheat (Triticum aestivum) 17.3-kDa HSP (clone Ta hsp 17.3) (30%), and with animal small HSPs and α-crystallins. The Hv hsp18 sequence was used to pick up Hv hsp17 genomic sequence encoding for another class I 17-kDa HSP. By computer analysis of the nucleotide sequence the TATA box, two heat shock promoter elements, a metal-ion response element, and the polyadenylation signals were identified. Barley HSP 18 has an additional cysteine-rich region when compared with HSP17 mapping at the carboxy terminal end.Key words: barley, cDNA, genomic clone, heat shock, nucleotide sequence, small heat shock proteins.


1984 ◽  
Vol 99 (1) ◽  
pp. 199-207 ◽  
Author(s):  
H Iida ◽  
I Yahara

We report that eucaryotic cells were induced to synthesize a specific class of heat shock proteins (hsps) when they entered the resting state, G0. This finding was originally made with Saccharomyces cerevisiae cells by taking advantage of the system in which we can distinguish between G1 arrests leading to G0 and those that do not result in G0 (Iida, H., and I. Yahara, 1984, J. Cell Biol. 98:1185-1193). Similar observations were subsequently made with higher eucaryotic cells including chick embryonic fibroblasts (CEF), mouse T lymphocytes, and Drosophila GM1 cells. The induction of hsps in G0 cells was distinct from that in heat-shocked cells in two respects. First, hsps with molecular weight around 25,000 were not induced in G0 cells, whereas most, if not all, high molecular weight (HMW) hsps were commonly induced both in G0 cells and in heat-shocked cells. Second, in contrast to the transient synthesis of hsps in heat-shocked cells, G0 cells continued to synthesize hsps at the stimulated rate for a relatively long period. These results suggest the possibility that high molecular weight hsps might function in a transition from the proliferating state to G0 or in maintaining G0 in the eucaryote.


Sign in / Sign up

Export Citation Format

Share Document