scholarly journals Finite Element Magnetic Method for Magnetorheological Based Actuators

2020 ◽  
Author(s):  
Ubaidillah ◽  
Bhre Wangsa Lenggana

Magnetorheological materials based actuators have been currently exciting research topic for more than half-decades. Some actuators have been developed based on magnetorheological fluids and elastomers such as dampers, brakes, haptic devices, clutches, mountings, etc. These devices have their exciting properties which are capable of changing characteristic based on the amount of magnetic flux applied to them. Due to this capability, they are usually called semi-active devices. These devices employ an electromagnetic coil for magnetic flux production. Therefore, during the design process, magnetostatic simulation using the finite element method magnetic is carried out to make a better magnetic circuit. This chapter will consider several discussions such as necessary magnetostatic using free software finite element method magnetic (FEMM); design consideration for the magnetic circuit of the device and case studies of several type simulation in magnetorheological materials based devices.

2021 ◽  
Vol 11 (21) ◽  
pp. 10334
Author(s):  
Wen-Ching Chang ◽  
Cheng-Chien Kuo

Power transformers play an indispensable component in AC transmission systems. If the operating condition of a power transformer can be accurately predicted before the equipment is operated, it will help transformer manufacturers to design optimized power transformers. In the optimal design of the power transformer, the design value of the magnetic flux density in the core is important, and it affects the efficiency, cost, and life cycle. Therefore, this paper uses the software of ANSYS Maxwell to solve the instantaneous magnetic flux density distribution, core loss distribution, and total iron loss of the iron core based on the finite element method in the time domain. . In addition, a new external excitation equation is proposed. The new external excitation equation can improve the accuracy of the simulation results and reduce the simulation time. Finally, the three-phase five-limb transformer is developed, and actually measures the local magnetic flux density and total core loss to verify the feasibility of the proposed finite element method of model and simulation parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xiaolong Yang ◽  
Guohong Wang ◽  
Ruibo Zhang

The stepped magnetofluid seal is an effective method for improving the pressure ability of ordinary magnetofluid seals (OMS) with large clearance. At present, the research on stepped magnetofluid seal with less than 0.4 mm small clearance has not been carried out yet. The equivalent magnetic circuit design of converging stepped magnetofluid seal (CSMS) with small clearance has been carried out and verified by magnetic field finite element method based on the CSMS theory and magnetic circuit theory. The effects of the width of the axial seal position, the height of the radial seal position, the number of the pole tooth in the axial seal position, and the number of the pole tooth in the radial seal position on the theoretical pressure ability of the CSMS are investigated by numerical simulation. The calculation results are analyzed and discussed. The results show that the magnetic flux leakage at the junction of the permanent magnet and pole piece causes the higher pressure ability of the CSMS structure designed by the equivalent magnetic circuit method than that calculated by the magnetic field finite element method. When the width of the axial seal position is greater than the height of the radial seal position and the number of pole teeth in the axial seal position is less than the number of pole teeth in the radial seal position, the CSMS has the best effect. Compared with OMS with small clearance, CSMS has greater advantages.


2013 ◽  
Vol 655-657 ◽  
pp. 355-358 ◽  
Author(s):  
Ning Ding ◽  
Yu Mei Song ◽  
Lina Wang ◽  
Ding Tong Zhang ◽  
Li Gong Ding

The optimal saving energy permanent magnet lifting chuck has been designed. Working principle of this technology is introduced. Magnetic circuit design is carried out by finite element method (FEM). At the same time, a perfect self-acting driving system has been invented for picking and releasing loads fast and conveniently without using any electricity at all. Industry prototype was manufactured, and it verified that the proposed lifting permanent magnetic chuck was feasible.


2012 ◽  
Vol 622-623 ◽  
pp. 130-135
Author(s):  
K.K. Boo ◽  
Ovinis Mark ◽  
Nagarajan Thirumalaiswamy

Thermal stress points in an inductor can cause insulation deterioration and ageing, leading to winding faults, while high magnetic flux causes interference. In this paper, the thermal and magnetic behaviors of inductors with different winding geometries are investigated using the Finite Element Method (FEM) based on 2-Dimension and 3-Dimension model of an inductor. Inductors with different winding geometries have different thermal envelopes and the geometry with the slowest thermal transition has fewer thermal stress points potentially reducing winding faults at the conductor. Furthermore, slow thermal transition would result in greater magnetic field coverage with no magnetic flux outside boundary of the inductor.


2020 ◽  
Vol 10 (10) ◽  
pp. 3370 ◽  
Author(s):  
Zhi-Xiong Jiang ◽  
Ki-Hong Park ◽  
Jun-Hyung Kim ◽  
Yuan-Wu Jiang ◽  
Dan-Ping Xu ◽  
...  

Linear vibration motors are becoming more popular for use in haptic applications owing to their better performance. However, a permanent magnet with a large volume causes massive magnetic flux leakage, which can be harmful to passengers with a cardiac pacemaker or an implantable-cardioverter defibrillator. The magnetic flux leakage is calculated using the 3D finite element method, which can also be applied to obtain the force factor. Then, the displacement and impedance are obtained to check the performance of the linear vibration motor by utilizing the finite element method. A prototype of a linear vibration motor is analyzed and verified based on the experimental results. Based on the analysis methods, three new designs are proposed to reduce the magnetic flux leakage to within 50 G. The final design shows a 93.07% reduction of the magnetic flux leakage while maintaining the same performance as the prototype. To verify the validity of the analysis results, three experimental results were obtained: the magnetic flux leakage, displacement, and impedance. The experimental results are in good agreement with the analysis results.


2017 ◽  
Vol 68 (1) ◽  
Author(s):  
Mitja Breznik ◽  
Viktor Goričan ◽  
Anton Hamler ◽  
Selma Čorović ◽  
Damijan Miljavec

AbstractThis paper presents magnetic flux density behaviour in laminated electrical sheets which affects the results and precision of iron losses calculation in imbedded permanent magnet (IPM) machine. Objective of the research was to analyse all the influential phenomena that were identified through iron loss models analysis, finite element method simulations and iron loss measurements. The presence of phenomena such as harmonic content and rotational magnetic fields are confirmed with finite element method analysis of concentrated and distributed winding IPM machine. A significant magnetic flux density ripple in the rotor of concentrated winding IPM machine in comparison to distributed winding IPM machine is revealed and analysed. Behaviour that affects iron loss in the rotor of synchronous machines in the absence of first order harmonic is analysed. The DC level added to alternating magnetic flux density was used in experiment to mimic magnetic behaviour on the rotor of IPM machine and further to calculate iron losses.


Author(s):  
Masaaki Matsumoto ◽  
Takahiko Tanahashi

It is well known that the vector finite element method is one of the powerful tools for solving electromagnetic problems. The vector shape functions that are consist of the facet and the edge vector shape functions have a lot of characteristics. One of them is automatic conservation of the magnetic flux density in analyzing the Induction equations without iterative correction. In the present paper the vector finite element method is applied to the problems of magnetohydrodynamics. Three-dimensional natural convection in a cavity under a constant magnetic field is analyzed numerically using the GSMAC finite element method for flow field and temperature field and the vector finite element method for the Induction equations. The computational results are good agreement with those obtained using B method that is one of the iterative methods to satisfy the solenoidal condition for the magnetic flux density of the Induction equations.


Sign in / Sign up

Export Citation Format

Share Document