scholarly journals Apatite/Salt Slurry Emission Control of Post Combustion Flue Gas of Lignite and Coal in Fluidized Bed - Double Circulation Microwave Column Adsorber

2020 ◽  
Author(s):  
Yildirim İsmail Tosun

Heated Ca apatite slimes in microwave radiated salt slurries are one of the most promising technologies for advanced fuel energy storage with favorable economic potential and intrinsic properties. The development of solid pellet technology for molten salt is a key issue in the heat transport processing. The apathite phosphate, slurry salt in the slime-salt bath mixes was investigated under microwave radiation heating to result in insoluble sorbent fines dissolved in porous basket. The insoluble consists of noble metal fission products, such as Pb, Zn, Cu. In this study, there have been very few transport studies of wet steam alkali slurry (metal fines-molten alkali salt mixture). Bath ferrite/apatite particle size changed the heat conductivity to salt bath. A major reason is that the retention time in fixed film processes is longer than in solid–gas processes. This allows more time to the heat absorption for cracking to the desorbed persistent compounds. Furthermore, radiated ferrite by microwave allows a sufficient intimate contact between coal and biomass surface pores and gas atmosphere in the furnace due to more pyrolysis gas desorption. Bubbling slurry of sorbent porosity decreases while temperature decreases. There was a critical porous structure of bubbling sorbent bath which is a factor that determines to a great extent both the sorbent rate and degree of boiling it was found that, a porous slurry bath over 45% was more efficient with radiated a low amount ferrite below weight rate of 15% in microwave column.


2020 ◽  
Author(s):  
Yıldırım İsmail Tosun

There have been very few transport studies of caustic alkali slurry (metal fines-caustic alkali salt mixture). Bath serpentinite particle size changed the heat conductivity to salt bath. A major reason is that the retention time in fixed film processes is longer than in solid–gas processes. This allows more time to the heat absorption for cracking to the desorbed persistent compounds. Furthermore, heavy serpantinite allows an sufficient intimate contact between coal and biomass surface pores and gas atmosphere in the furnace due to more pyrolysis gas desorption. For seeing the sustainability sequestration and environmental concerns in feasibility sight, the microwave heating technologies encompassing natural carbonation, precipitates for soil remediation and toxic gas sorption was offered to be adopted in Şırnak Asphaltite/Batman Oil Fields cases. In many places, amine sequestration techniques can work synergistically for better results. This study determines to a great extent both the high rate and degree of carbonation under pressurized sludge at 5–10 bar so it was found that, a porous sludge bath over 45% sludge was more efficiently conducted even at a low amount serpantinite slime weight rate, below weight rate of 15%.



Author(s):  
Takatoshi Hijikata ◽  
Tadafumi Koyama

Pyro-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines - molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on a molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 μm were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.2 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.6 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.6 m/s.



2020 ◽  
Author(s):  
Yildirim İsmail Tosun

The concentration of low grade iron ore resources was evaluated by washing and reduction. The advanced concentration methods for low grade limonite and hematite iron ores of South Eastern Anatolian resources required such specific methods. The followed column flotation and magnetic separation, microwave radiated reduction of hematite slime and limonite sand orewere investigated on potential reducing treatment. The bubling fluidized bed allows more time to the heat radiation and conduction for reducing to the resistive ıron compounds. Furthermore, heavy limonite and iron oxide allowed sufficient intimate contact coal and biomass through surface pores in the bubbling fluidized bed furnace due to more pyrolysis gas desorption. Bubbling bath porosity decreased by temperature decrease. This research was included reduction in microwave of poor hematite and limonite ores in the microwave ovens, but through smaller tubing flows as sintering shaft plants following column flotation and scavangering operation. Two principle stages could still manage prospective pre reduction granule and pellet production in new sintering plants. There is a lack of energy side which one can produce reduced iron ore in advanced technology plants worldwide. However, for the low grade iron ores such as limonite and sideritic iron ores it was thought that microwave reduction technique was assumed that this could cut energy consumption in the metallurgy plants.



Author(s):  
Takatoshi Hijikata ◽  
Tadafumi Koyama

Pyrometallurgical reprocessing is one of the most promising technologies for the advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. The feasibility of pyrometallurgical reprocessing has been studied through many laboratory-scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for its industrialization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been a few transport studies on high-temperature fluids. In this study, a metal transport test rig was installed in an argon glove box with the aim of developing technologies for transporting liquid cadmium at approximately 773 K. The transport of liquid Cd using gravity was controlled by adjusting the valve. The liquid Cd was transported by a suction pump against a 0.93 m head and the transport amount of Cd was well controlled with the Cd amount and the position of the suction tube. The transportation of liquid cadmium at approximately 700 K could be controlled at a rate of 0.5–2.5 dm3/min against a 1.6 m head using a centrifugal pump.



Author(s):  
Ingo D. Kleinhietpaß ◽  
Hermann Unger ◽  
Hermann-Josef Wagner ◽  
Marco K. Koch

With the purpose of modeling and calculating the core behavior during severe accidents in nuclear power plants system codes are under development worldwide. Modeling of radionuclide release and transport in the case of beyond design basis accidents is an integrated feature of the deterministic safety analysis of nuclear power plants. Following a hypothetical, uncontrolled temperature escalation in the core of light water reactors, significant parts of the core structures may degrade and melt down under formation of molten pools, leading to an accumulation of large amounts of radioactive materials. The possible release of radionuclides from the molten pool provides a potential contribution to the aerosol source term in the late phase of core degradation accidents. The relevance of the amount of transferred oxygen from the gas atmosphere into the molten pool on the specification of a radionuclide and its release depends strongly on the initial oxygen inventory. Particularly for a low oxygen potential in the melt as it is the case for stratification when a metallic phase forms the upper layer and, respectively, when the oxidation has proceeded so far so that zirconium was completely oxidized, a significant influence of atmospheric oxygen on the specification and the release of some radionuclides has to be anticipated. The code RELOS (Release of Low Volatile Fission Products from Molten Surfaces) is under development at the Department of Energy Systems and Energy Economics (formerly Department of Nuclear and New Energy Systems) of the Ruhr-University Bochum. It is based on a mechanistic model to describe the diffusive and convective transport of fission products from the surface of a molten pool into a cooler gas atmosphere. This paper presents the code RELOS, i. e. the features and abilities of the latest code version V2.3 and the new model improvements of V2.4 and the calculated results evaluating the implemented models which deal with the oxygen transfer from the liquid side of the phase boundary to the bulk of the melt by diffusion or by taking into account natural convection. Both models help to estimate the amount of oxygen entering into the liquid upper pool volume and being available for the oxidation reaction. For both models the metallic, the oxidic and a mixture phase can be taken into account when defining the composition of the upper pool volume. The influence of crust formation, i. e. the decrease of the liquid pool surface area is taken care of because it yields the relevant amount of fission products released into the atmosphere. The difference of the partial density between the gas side of the phase boundary and the bulk of the gas phase is the driving force of mass transport.



1997 ◽  
Vol 34 (3) ◽  
pp. 304-309 ◽  
Author(s):  
Haruaki MATSUURA ◽  
Ryuzo TAKAGI ◽  
Isao OKADA ◽  
Reiko FUJITA


2017 ◽  
Vol 35 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Yuanyuan Chai ◽  
Qianqian Liu ◽  
Lu Zhang ◽  
Jia Ren ◽  
Wei-Lin Dai


2019 ◽  
Vol 27 (07) ◽  
pp. 1950169 ◽  
Author(s):  
E. DEMIR ◽  
M. N. MIRZAYEV ◽  
A. B. TUĞRUL ◽  
B. A. ABDURAKHIMOV ◽  
S. İ. KARAASLAN

The aim of this study is to provide information about microstructural and thermal properties of tungsten-based composites. Phase composition and microstructural characterization of tungsten composites were performed using X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), and Raman Spectroscopy. SEM images revealed the distribution of tungsten (W), vanadium carbide (VC) and graphite (C) powders in the tungsten matrix. The Raman spectra showed two major peaks, which are recorded at 1331 (vs) cm−1, and 1583 (vs) cm−1. These bands can be attributed to disorder graphite (D) and graphite (G). Thermogravimetric analysis (TGA) measurements were performed to determine the weight loss and thermal stability of the tungsten-based composites under argon gas atmosphere and at high temperatures. TGA measurements were performed to determine weight loss and thermal stability of tungsten-based composites under argon gas atmosphere and at high temperatures. The TG curve showed a slight weight loss in this temperature range. Mass loss is thought to be due to oxidation and gas desorption of materials.



2017 ◽  
Vol 35 (2) ◽  
pp. 125-125
Author(s):  
Yuanyuan Chai ◽  
Qianqian Liu ◽  
Lu Zhang ◽  
Jia Ren ◽  
Wei-Lin Dai


Author(s):  
Gregory Hull ◽  
Hugues Lambert ◽  
Kiran Haroon ◽  
Paul Coffey ◽  
Timothy Kerry ◽  
...  

Pyroprocessing of spent nuclear fuels is an electrochemical separation method where spent metallic fuel is dissolved in a molten salt bath to allow uranium (U) and plutonium (Pu) to be isolated from fission products (FPs) and other impurities.



Sign in / Sign up

Export Citation Format

Share Document