scholarly journals Review of the Current State-of-the-Art of Dovetail Massive Wood Elements

2021 ◽  
Author(s):  
Hüseyin Emre Ilgın ◽  
Markku Karjalainen ◽  
Olli-Paavo Koponen

Engineered wood products (EWPs) have been progressively more being utilized in the construction industry as structural materials since the 1990s. In the content of EWPs, adhesives play an important role. However, because of their petroleum-based nature, adhesives contribute to toxic gas emissions such as formaldehyde and Volatile Organic Compounds, which are detrimental to the environment. Moreover, the frequent use of adhesives can cause other critical issues in terms of sustainability, recyclability, reusability, and further machining. In addition to this, metal connectors employed in EWPs harm their end-of-life disposal, reusability, and additional processing. This chapter is concentrating on dovetail massive wood elements (DMWE) as adhesive- and metal connector-free sustainable alternatives to commonly used EWPs e.g., CLT, LVL, MHM, Glulam. The dovetail technique has been a method of joinery mostly used in wood carpentry, including furniture, cabinets, log buildings, and traditional timber-framed buildings throughout its rich history. It is believed that this chapter will contribute to the uptake of DMWE for more diverse and innovative structural applications, thus the reduction in carbon footprint by increasing the awareness and uses of DMWE in construction.

2010 ◽  
Vol 38 (1) ◽  
pp. 80-98 ◽  
Author(s):  
M. Gerster ◽  
C. Fagouri ◽  
E. Peregi

Abstract One challenge facing green tire technology is to achieve good silica hydrophobation/dispersion within the polymer matrix without a detrimental increase in the rubber compound’s viscosity during compounding. This phenomenon is well known to be induced by premature and unwanted coupling and/or crosslinking of the traditional coupling agents. The current state-of-the-art polysulfides silanes, bis(3-triethoxysilylpropyl)tetrasulfide and to a lesser extent bis(3-triethoxysilylpropyl)disulfide (“Product Application—VP Si 75/VP X 75-S in the Rubber Industry,” Degussa Hüls Report No. PA 723.1E), need to be carefully incorporated with careful temperature control during the rubber compounding to prevent this “scorchy” behavior. This paper will present novel monofunctional silanes which are suited for preparing highly silica-loaded rubber compounds of superior processability, while applying fewer mixing passes, thereby reducing mixing times which can lead to improved productivity and cost savings. Additionally, these safer coupling agents can be processed at higher temperatures which can, again, lead to reduced mixing time and better ethanol removal thereby improving the tire’s physical properties and reducing the volatile organic compounds generated during the tire’s use. The rubber compounds produced using these monofunctional silanes are characterized by lower Mooney viscosity and improved processability. Advantageously, within these novel chemical classes of coupling agents, selective functionalization of the silanes allows production of tailor-made coupling agents which can respond to the specific requirements of the tire industry (Vilgis, T. A. and Heinrich, G., “Die Physic des Autoreifens,” Physikalische Blätter, Vol. 57, 2001, pp. 1–7).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosa Alba Sola Martínez ◽  
José María Pastor Hernández ◽  
Gema Lozano Terol ◽  
Julia Gallego-Jara ◽  
Luis García-Marcos ◽  
...  

AbstractThe noninvasive diagnosis and monitoring of high prevalence diseases such as cardiovascular diseases, cancers and chronic respiratory diseases are currently priority objectives in the area of health. In this regard, the analysis of volatile organic compounds (VOCs) has been identified as a potential noninvasive tool for the diagnosis and surveillance of several diseases. Despite the advantages of this strategy, it is not yet a routine clinical tool. The lack of reproducible protocols for each step of the biomarker discovery phase is an obstacle of the current state. Specifically, this issue is present at the data preprocessing step. Thus, an open source workflow for preprocessing the data obtained by the analysis of exhaled breath samples using gas chromatography coupled with single quadrupole mass spectrometry (GC/MS) is presented in this paper. This workflow is based on the connection of two approaches to transform raw data into a useful matrix for statistical analysis. Moreover, this workflow includes matching compounds from breath samples with a spectral library. Three free packages (xcms, cliqueMS and eRah) written in the language R are used for this purpose. Furthermore, this paper presents a suitable protocol for exhaled breath sample collection from infants under 2 years of age for GC/MS.


2014 ◽  
Vol 1042 ◽  
pp. 58-64 ◽  
Author(s):  
Santanu Sardar ◽  
Santanu Kumar Karmakar ◽  
Debdulal Das

Metal matrix nanocomposites (MMNCs) have emerged as an important class of materials for structural applications specifically in the automobile and aerospace sectors; however, development of cost effective mass production technique of MMNCs with requisite operational and geometrical flexibilities is still a great challenge. Focused research in the last decade has highlighted that ultrasonic cavitation based processing is the most promising method for manufacturing of MMNCs with nearly uniform distribution of nanoparticles, having added advantage of being a liquid-phase route. This article presents an overview on the basic principles and recent advances in the ultrasonic cavitation based processing of MMNCs with a particular emphasis on identifying relationships amongst processing variables, microstructural parameters and mechanical properties. Critical issues of MMNCs fabrication are discussed.


2019 ◽  
Vol 6 (4) ◽  
pp. 74-95
Author(s):  
Özlem Yurtsever ◽  
Seniye Umit Firat

Global warming has become one of the most critical issues in the recent years. There is a great debate, centered on greenhouse gas emissions of countries, companies, and institutions. Not only the manufacturing sector but also service sector has begun to be questioned in terms of the need for controlling greenhouse gases. Thus, banks deserve an attention on the basis of sustainability and environmental impact. Besides the operational activities of this enormous sector, its investing and lending choices have considerable influence on sustainability. The carbon footprint measurement indicators have to be standardized in order to estimate the contributions of the banks in the global climate change precisely. In this study, carbon footprint measurement indicators, extracted from the sustainability reports and/or websites of the banks in Turkey are examined. The findings have been comparatively discussed with the measurements used by the international banks and addressed in the literature.


Sign in / Sign up

Export Citation Format

Share Document