Formation of anodic porous SiC enabled by control of lattice defects

Denki Kagaku ◽  
2021 ◽  
Vol 89 (4) ◽  
pp. 359-364
Author(s):  
Yuki MAEDA ◽  
Kazuhiro FUKAMI
Keyword(s):  
Author(s):  
S. Kimoto ◽  
H. Hashimoto ◽  
S. Takashima ◽  
R. M. Stern ◽  
T. Ichinokawa

The most well known application of the scanning microscope to the crystals is known as Coates pattern. The contrast of this image depends on the variation of the incident angle of the beam to the crystal surface. The defect in the crystal surface causes to make contrast in normal scanning image with constant incident angle. The intensity variation of the backscattered electrons in the scanning microscopy was calculated for the defect in the crystals by Clarke and Howie. Clarke also observed the defect using a scanning microscope.This paper reports the observation of lattice defects appears in thin crystals through backscattered, secondary and transmitted electron image. As a backscattered electron detector, a p-n junction detector of 0.9 π solid angle has been prepared for JSM-50A. The gain of the detector itself is 1.2 x 104 at 50 kV and the gain of additional AC amplifier using band width 100 Hz ∼ 10 kHz is 106.


Author(s):  
C. H. Carter ◽  
J. E. Lane ◽  
J. Bentley ◽  
R. F. Davis

Silicon carbide (SiC) is the generic name for a material which is produced and fabricated by a number of processing routes. One of the three SiC materials investigated at NCSU is Norton Company's NC-430, which is produced by reaction-bonding of Si vapor with a porous SiC host which also contains free C. The Si combines with the free C to form additional SiC and a second phase of free Si. Chemical vapor deposition (CVD) of CH3SiCI3 onto a graphite substrate was employed to produce the second SiC investigated. This process yielded a theoretically dense polycrystalline material with highly oriented grains. The third SiC was a pressureless sintered material (SOHIO Hexoloy) which contains B and excess C as sintering additives. These materials are candidates for applications such as components for gas turbine, adiabatic diesel and sterling engines, recouperators and heat exchangers.


Author(s):  
Jun Liu ◽  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Ultrafine particles usually have unique physical properties. This study illustrates how the lattice defects and interfacial structures between particles are related to the size of ultrafine crystalline gold particles.Colloidal gold particles were produced by reducing gold chloride with sodium citrate at 100°C. In this process, particle size can be controlled by changing the concentration of the reactant. TEM samples are prepared by transferring a small amount of solution onto a thin (5 nm) carbon film which is suspended on a copper grid. In this work, all experiments were performed with Philips 430T at 300 kV.With controlled seeded growth, particles of different sizes are produced, as shown in Figure 1. By a careful examination, it can be resolved that very small particles have lattice defects with complex interfaces. Some typical particle structures include multiple twins, resulting in a five-fold symmetry bicrystals, and highly disordered regions. Many particles are too complex to be described by simple models.


1979 ◽  
Vol 40 (C2) ◽  
pp. C2-571-C2-572
Author(s):  
Y. Ishida ◽  
T. Ozawa ◽  
H. Ichinose ◽  
K. Sassa ◽  
M. Taniwaki ◽  
...  

1974 ◽  
Vol 35 (C6) ◽  
pp. C6-309-C6-313
Author(s):  
M. KATO ◽  
Y. ISHIDA ◽  
K. SASSA ◽  
S. UMEYAMA ◽  
M. MORI

2014 ◽  
Vol 17 (8) ◽  
pp. 705-713 ◽  
Author(s):  
Hikaru Maeda ◽  
Yoshihiro Hirata ◽  
Soichiro Sameshima ◽  
Taro Shimonosono

1987 ◽  
Vol 110 (5) ◽  
pp. 497-512 ◽  
Author(s):  
Loeïz Nazé ◽  
Nicole Doukhan ◽  
Jean-Claude Doukhan ◽  
Khellil Latrous
Keyword(s):  

2015 ◽  
Vol 25 (5) ◽  
pp. 258-263
Author(s):  
Shinhee Jun ◽  
◽  
Wonjoo Lee ◽  
Young-Min Kong

Sign in / Sign up

Export Citation Format

Share Document