scholarly journals Rapid Enumeration of Physiologically Active Escherichia coli O157 in Drinking Water by Flow Cytometry

2004 ◽  
Vol 21 (1) ◽  
pp. 38-43
Author(s):  
Nobuyasu YAMAGUCHI ◽  
Makoto SASADA ◽  
Masao NASU
1998 ◽  
Vol 13 (2) ◽  
pp. 77-83 ◽  
Author(s):  
YASUNOBU TANAKA ◽  
MASATO YOSHIMITSU ◽  
NOBUYASU YAMAGUCHI ◽  
KATSUJI TANI ◽  
MASAO NASU

2019 ◽  
Vol 2 (2) ◽  
pp. a13-19
Author(s):  
ELEXSON NILLIAN ◽  
AMIZA NUR ◽  
DIYANA NUR ◽  
AMIRAH ZAKIRAH ◽  
GRACE BEBEY

Contamination of drinks with E. coli O157:H7 served in food premises such as restaurants can cause haemorrhagic colitis and haemolytic uremic syndrome to humans. The presence or absence of faecal pathogen was demonstrated using coliform group as indicator microorganisms. Therefore, this study was conducted to detect the presence of E. coli O157:H7 in drinking water from food restaurant premise in Kota Samarahan and Kuching to ensure safe and potable drinking water is served to the consumer. A total of thirty (n=30) drink samples including six types of each of the samples are cold plain water, iced tea, iced milo, syrup and iced milk tea. Most Probable Number (MPN) procedure was used in this study to enumerate the MPN values of coliform bacteria in each drink collected. A total of 53.33% (16/30) of the drink samples showed positive E. coli detection. Then, the PCR assay showed 6.25% (one out of 16 isolates) samples were positive and carried stx1 gene produced by E. coli O157:H7 in iced milo sample types. This study showed the drinks collected from food premises was contaminated with faecal contamination, which was not safe to drink by the consumer. Therefore, preventive actions should be taken to prevent foodborne illness outbreak in future


2004 ◽  
Vol 67 (12) ◽  
pp. 2651-2656 ◽  
Author(s):  
P. McGEE ◽  
L. SCOTT ◽  
J. J. SHERIDAN ◽  
B. EARLEY ◽  
N. LEONARD

Ruminant livestock, particularly cattle, is considered the primary reservoir of Escherichia coli O157:H7. This study examines the transmission of E. coli O157:H7 within groups of cattle during winter housing. Holstein Friesian steers were grouped in six pens of five animals. An animal inoculated with and proven to be shedding a marked strain of E. coli O157: H7 was introduced into each pen. Fecal (rectal swabs) and hide samples (900 cm2 from the right rump) were taken from the 36 animals throughout the study. Water, feed, and gate or partition samples from each pen were also examined. Within 24 h of introducing the inoculated animals into the pens, samples collected from the drinking water, pen barriers, and animal hides were positive for the pathogen. Within 48 h, the hides of 20 (66%) of 30 cohort animals from the six pens were contaminated with E. coli O157:H7. The first positive fecal samples from the noninoculated cohort animals were detected 3 days after the introduction of the inoculated steers. During the 23 days of the study, 15 of 30 cohort animals shed the marked E. coli O157: H7 strain in their feces on at least one occasion. Animal behavior in the pens was monitored during a 12-h period using closed circuit television cameras. The camera footage showed an average of 13 instances of animal grooming in each pen per hour. The study suggests that transmission of E. coli O157:H7 between animals may occur following ingestion of the pathogen at low levels and that animal hide may be an important source of transmission.


1999 ◽  
Vol 65 (4) ◽  
pp. 1397-1404 ◽  
Author(s):  
Lawrence Goodridge ◽  
Jinru Chen ◽  
Mansel Griffiths

ABSTRACT In this paper we describe evaluation and characterization of a novel assay that combines immunomagnetic separation and a fluorescently stained bacteriophage for detection of Escherichia coliO157:H7 in broth. When it was combined with flow cytometry, the fluorescent-bacteriophage assay (FBA) was capable of detecting 104 cells/ml. A modified direct epifluorescent-filter technique (DEFT) was employed in an attempt to estimate bacterial concentrations. Using regression analysis, we calculated that the lower detection limit was between 102 and 103cells/ml; however, the modified DEFT was found to be an unreliable method for determining bacterial concentrations. The results of this study show that the FBA, when combined with flow cytometry, is a sensitive technique for presumptive detection of E. coliO157:H7 in broth cultures.


2011 ◽  
Vol 74 (2) ◽  
pp. 254-260 ◽  
Author(s):  
HAMZAH M. AL-QADIRI ◽  
XIAONAN LU ◽  
NIVIN I. AL-ALAMI ◽  
BARBARA A. RASCO

Survival of Escherichia coli O157:H7 and Campylobacter jejuni that were separately inoculated into bottled purified drinking water was investigated during storage at 22, 4, and −18°C for 5, 7, and 2 days, respectively. Two inoculation levels were used, 1 and 10 CFU/ml (102 and 103 CFU/100 ml). In samples inoculated with 102 CFU/100 ml, C. jejuni was not detectable (>2-log reduction) after storage under the conditions specified above. E. coli O157:H7 was detected on nonselective and selective media at log reductions of 1.08 to 1.25 after storage at 22°C, 1.19 to 1.56 after storage at 4°C, and 1.54 to 1.98 after storage at −18°C. When the higher inoculation level of 103 CFU/100 ml was used, C. jejuni was able to survive at 22 and 4°C, with 2.25- and 2.17-log reductions, respectively, observed on nonselective media. At these higher inoculation levels, E. coli O157:H7 was detectable at 22, 4, and −18°C, with log reductions of 0.76, 0.97, and 1.21, respectively, achieved on nonselective media. Additionally, E. coli O157:H7 showed significant differences in culturability (P < 0.05) on the nonselective and selective culture media under the different storage conditions, with storage at −18°C for 2 days being the treatment most inhibiting. The percentage of sublethal injury of E. coli O157:H7 ranged from ~33 to 75%, indicating that microbial examination of bottled water must be done carefully, otherwise false-negative results or underestimation of bacterial numbers could pose a health risk when low levels of pathogens are present.


Sign in / Sign up

Export Citation Format

Share Document