scholarly journals Risk Assessment of Petroleum Products Loading Arm by BTA Technique

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mostafa Mirzaei Aliabadi ◽  
Iraj Mohammadfam ◽  
Samane Khorshidikia

Background: Loading of petroleum products consists of several parts, of which the arm platform section is known to be the source of most accidents. Objectives: Therefore, this study was done to evaluate the risk of arm loading platforms using the bow-tie analysis (BTA) technique to identify the causes and the probability of occurrence of hazardous events. Methods: In this study, we first identified the risks of the loading arm using the expert’s judgment. The risk of overflow is considered as the top event. Then, the basic events were identified by the fault tree analysis (FTA), and the possible consequences of the top event were predicted using the event tree. Next, using the computational equations, the probability of spillover and its consequences were calculated. The path of the risk event from the causal phase to the consequent phase was also illustrated by sketching the structure of the BTA. Results: A total of 14 basic events and 8 intermediate events were involved in the occurrence of the top event, and 5 consequences were identified for the risk of spillover. The probability of the top event occurring was calculated to be 3.12 × 10-7. Conclusions: According to the results of this study, tank overflow is one of the most important hazards in the loading arm section.

2021 ◽  
Author(s):  
Zlatko Zafirovski ◽  
Vasko Gacevski ◽  
Zoran Krakutovski ◽  
Slobodan Ognjenovic ◽  
Ivona Nedevska

The intense demand and construction of tunnels is accompanied by uncertainties. The reason for appearance of uncertainties are the complex solutions and conditions for these structures. Location and dimensions are becoming more challenging, and the construction is predicted in complexed geological conditions, leading to application of new approaches, methodologies and technologies by the engineers. Most of the uncertainties and unwanted events in tunnelling occur in the construction phase, which generally leads to economic consequences and time losses. For easier handling of the uncertainties, they should be anticipated and studied within a separate part of each project. One of the newer approaches to dealing with uncertainties is hazard and risk assessment and defining ways to deal with them i.e. management. Hazards and risks can be analysed qualitatively and quantitatively. The quantitative analysis, examines the causes and consequences in more detail way and gives explanation of the dependencies. With the quantitative approach, a more valuable information for decision-making can be provided. There are various models and methods used for the quantification of hazards and risks. This paper presents a methodology in which the fault tree analysis and event tree analysis are used in combination to obtain quantitative results. The fault tree analysis is used for assessment of various hazards and the different ways and reasons that cause them. The event tree analysis is a method for assessing the possible scenarios, which follow after a certain hazard i.e. the consequences that may occur in the project. These trees represent graphic models combined with a mathematical (probabilistic) model, which give the probability of occurrence of the risks.


Author(s):  
Gholamreza Abdollahzadeh ◽  
Sima Rastgoo

In this paper, interruption risk in construction activities of bridge projects is assessed in order to identify the main causes of its occurrence and also to determine the potential outcomes resulted from the risk occurrence. To do this, fault tree and event tree analysis (ETA) methods are applied. As the application of the traditional approach of these two methods is difficult in many cases due to limited access to information, fuzzy arithmetic can be considered as a useful tool. In this research, first, fault tree structure is created according to consequences resulted from the Delphi method. Then, the probability of risk occurrence is calculated by applying fault tree analysis (FTA) based on fuzzy logic. By establishing the structure of fault tree related to the failure risk of mitigation strategies, the main causes relating to failure of strategies are identified. The structure of the event tree is created using the obtained results; moreover, the expected monetary value (EMV) of risk event is computed. Finally, to validate the results obtained, a model is created by Monte Carlo simulation and then the results obtained by applying the two methods are compared. The EMV of the risk event evaluated in this paper is determined to be 9.93% of the project baseline cost.


2020 ◽  
Vol 5 (2) ◽  
pp. 98-105
Author(s):  
Seif El Islam Bouasla ◽  
Youcef ZENNIR ◽  
El-Arkam MECHHOUD

The purpose of this work is the risk assessment of a stabilizer reflux drum using HAZOP - Fault tree - Event tree approach. This risk assessment approach aims first of all to identify potential accident scenarios using Hazard an Operability study (HAZOP), these scenarios need more detailed frequencies estimation, it is performed thanks to fault tree analysis. Then, to analyze events issuing after success or fail of safety barriers, the event tree is used. Finally, in order to better appreciate accident scenarios, ALOHA is utilized to simulate them.


2019 ◽  
Vol 577 ◽  
pp. 123974 ◽  
Author(s):  
Mahdi Gachlou ◽  
Abbas Roozbahani ◽  
Mohammad Ebrahim Banihabib

Author(s):  
Christoph Läsche ◽  
Jan Pinkowski ◽  
Sebastian Gerwinn ◽  
Rainer Droste ◽  
Axel Hahn

Safety and dependability are major design objectives for offshore operations such as the construction of wind farms or oil and gas exploration. Today processes and related risks are typically described informally and process specification are neither reusable nor suitable for risk assessment. Here, we propose to use a specification language for processes. We integrate this specification language in a generic modeling approach in combination with an analysis tool and a tool to construct health, safety and environment (HSE) plans — a mandatory document for granting a construction/operation permit. Specifically, for each planned scenario a process is modeled, describing the detailed operation of the involved actors as well as the interaction with resources and environmental conditions. We enrich this process model with hazardous events which is facilitated by integration with an offshore operation generic hazard list, thereby giving access to expert knowledge for the specific situation to be planned. This in turn allows us to perform an automatic quantitative risk assessment using fault tree analysis. We exemplify our approach on a standard offshore operation of personnel transfer from an offshore building to another naval unit by modeling, annotating with hazards, performing the fault-tree analysis, and finally generating HSE plans.


Sign in / Sign up

Export Citation Format

Share Document