scholarly journals Curcumin-Loaded Iron Oxide Nanoparticles Coated with Sodium Alginate and Hydroxyapatite and Their Cytotoxic Effects Against the HT-29 and MCF-7 Cancer Cell Lines

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Masoomeh Nobahari ◽  
Kahin Shahanipour ◽  
Soheil Fatahian ◽  
Ramesh Monajemi

Background: Curcumin, a bioactive component of Curcuma langa, has been investigated for its anti-proliferative effects against various cancer cell lines. Although results are very promising, the poor water solubility and low bioavailability of curcumin are its main limitations for clinical application. Objectives: The purpose of this study was to develop a drug delivery system, consisting of hydroxyapatite (HAp) polymer and sodium alginate (NaAlg), covering the magnetic core of iron oxide nanoparticles (IONPs), and loaded with curcumin in order to enhance its bioavailability and therapeutic efficacy. Methods: In this study, IONPs were prepared by the co-precipitation method and coated with HAp and NaAlg. The nanoparticles (NPs) were characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy (FTIR), and electron microscopy (TEM and SEM). Encapsulation efficiency and curcumin loading rate were examined. Drug release rate was also measured in vitro at pH = 7.5 and 5.5. The toxicity of curcumin-loaded NPs and free curcumin was evaluated against HT-29 and MCF-7 cancer cells. Results: The assessment of physicochemical characteristics showed the synthesis of spherical particles with nanometer sizes (5 - 7 nm) and a high encapsulation efficiency (84.16 ± 3.51 %) and drug loading capacity (21.03 ± 0.87%). Maximum drug release was obtained at pH = 5.5. Iron oxide nanoparticles showed no significant cytotoxic effects. Curcumin-loaded coated IONPs showed a higher toxicity against HT-29 and MCF-7 cancer cells compared to free curcumin. Conclusions: This in vitro study showed that the encapsulation of curcumin, as a potent herbal drug, into IONPs enhanced its bioavailability, suggesting the NPs as an efficient vehicle for targeted drug delivery in cancer treatment.

2020 ◽  
Vol 13 ◽  
Author(s):  
Selin Yılmaz ◽  
Çiğdem İçhedef ◽  
Kadriye Buşra Karatay ◽  
Serap Teksöz

Backgorund: Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used for targeted drug delivery systems due to their unique magnetic properties. Objective: In this study, it’s aimed to develop a novel targeted 99mTc radiolabeled polymeric drug delivery system for Gemcitabine (GEM). Methods: Gemcitabine, an anticancer agent, was encapsulated into polymer nanoparticles (PLGA) together with iron oxide nanoparticles via double emulsion technique and then labeled with 99mTc. SPIONs were synthesized by reduction–coprecipitation method and encapsulated with oleic acid for surface modification. Size distribution and the morphology of the synthesized nanoparticles were caharacterized by dynamic light scattering(DLS)and scanning electron microscopy(SEM), respectively. Radiolabeling yield of SPION-PLGAGEM nanoparticles were determined via Thin Layer Radio Chromatography (TLRC). Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells in vitro. Results: SEM images displayed that the average size of the drug-free nanoparticles was 40 nm and the size of the drug-loaded nanoparticles was 50 nm. The diameter of nanoparticles were determined as 366.6 nm by DLS, while zeta potential was found as-29 mV. SPION was successfully coated with PLGA, which was confirmed by FTIR. GEM encapsulation efficiency of SPION-PLGA was calculated as 4±0.16 % by means of HPLC. Radiolabeling yield of SPION-PLGA-GEM nanoparticles were determined as 97.8±1.75 % via TLRC. Cytotoxicity of GEM loaded SPION-PLGA were investigated on MDA-MB-231 and MCF7 breast cancer cells. SPION-PLGA-GEM showed high uptake on MCF-7, whilst incorporation rate was increased for both cell lines which external magnetic field application. Conclusion: 99mTc labeled SPION-PLGA nanoparticles loaded with GEM may overcome some of the obstacles in anti-cancer drug delivery because of their appropriate size, non-toxic, and supermagnetic characteristics.


2010 ◽  
Vol 89-91 ◽  
pp. 411-418 ◽  
Author(s):  
Nhiem Tran ◽  
Rajesh A. Pareta ◽  
Erik Taylor ◽  
Thomas J. Webster

Magnetic nanoparticles have been used extensively as drug delivery materials in recent years [1,2]. The present research goal is to treat bone diseases (such as osteoporosis and infection) by using surface modified magnetic nanoparticles. Magnetite (Fe3O4) and maghemite (Fe2O3) were synthesized and coated with calcium phosphate (CaP). The resulting nanoparticles were treated hydrothermally to change the crystalline properties of CaP. Nanoparticles were characterized via transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). TEM was also used to study the uptake of nanoparticles into osteoblasts (OB) and bacteria. OB proliferation experiments were conducted after 1, 3 and 5 days in the presence of the various iron oxide nanoparticles alone and CaP coated iron oxide magnetic nanoparticles. OB proliferation experiments were also conducted after 1, 3 and 5 days in the presence of various concentrations of CaP coated nanoparticles to examine a possible concentration dependent trend on OB density. Staph epidermidis were incubated with different doses of Fe3O4 to determine the effect of these nanoparticles on bacteria activity. Results of this in vitro study demonstrated greater OB functions and inhibited bacteria functions in the presence of select magnetic nanoparticles. In summary, the results of this study showed that magnetic nanoparticles should be further studied for various orthopedic applications.


Author(s):  
SUBASHINI RAJARAM ◽  
SENTHIL RAJAN DHARMALINGAM ◽  
SANTHOSE RANI A ◽  
SAPTHASRI R ◽  
VARSHA D ◽  
...  

Objective: The present study aimed to develop a novel type of superparamagnetic iron oxide nanoparticles (SPIONs) to deliver prednisolone at colon as a target site for the treatment of inflammatory bowel disease (IBD) such as ulcerative colitis and Crohn’s disease which may further progress to cancer. Methods: SPIONs were synthesized using a coprecipitation method. Further, it was encapsulated with prednisolone-polyethylene glycol by double emulsion method (W1/O/W2). The prepared formulations were characterized for its physicochemical characterization such as scanning electron microscopy, X-ray diffraction, particle size and zeta potential, encapsulation efficiency, and in vitro drug release. Results: The results reveal that the physicochemical property of the formulations complies with the standard values and in vitro release of prednisolone in the first 18 h, attains 57 and 58% and it reaches 71 and 75% at 24 h, and this is statistically significant (p˂0.0177). This release result implies that the drug release from the formulations is controllable and sustains manner. Conclusion: Our findings could be a promising approach for the delivery of prednisolone with enhanced half-life for the treatment of IBD through colon targeting.


2021 ◽  
Vol 12 ◽  
pp. 1127-1139
Author(s):  
Karishma Berta Cotta ◽  
Sarika Mehra ◽  
Rajdip Bandyopadhyaya

Nanoparticle deployment in drug delivery is contingent upon controlled drug loading and a desired release profile, with simultaneous biocompatibility and cellular targeting. Iron oxide nanoparticles (IONPs), being biocompatible, are used as drug carriers. However, to prevent aggregation of bare IONPs, they are coated with stabilizing agents. We hypothesize that, zwitterionic drugs like norfloxacin (NOR, a fluoroquinolone) can manifest dual functionality – nanoparticle stabilization and antibiotic activity, eliminating the need of a separate stabilizing agent. Since these drugs have different charges, depending on the surrounding pH, drug loading enhancement could be pH dependent. Hence, upon synthesizing IONPs, they were coated with NOR, either at pH 5 (predominantly as cationic, NOR+) or at pH 10 (predominantly as anionic, NOR−). We observed that, drug loading at pH 5 exceeded that at pH 10 by 4.7–5.7 times. Furthermore, only the former (pH 5 system) exhibited a desirable slower drug release profile, compared to the free drug. NOR-coated IONPs also enable a 22 times higher drug accumulation in macrophages, compared to identical extracellular concentrations of the free drug. Thus, lowering the drug coating pH to 5 imparts multiple benefits – improved IONP stability, enhanced drug coating, higher drug uptake in macrophages at reduced toxicity and slower drug release.


2019 ◽  
Vol 9 (2) ◽  
pp. 166-172
Author(s):  
Ahmed A.G. El-Shahawy ◽  
Gamal Elghnam ◽  
Alsayed A.M. Alsherbini

Background:Gold and Iron Oxide nanoparticles NPs play as nanocarriers for a specific drug delivery and contrast agents. Intercellular uptake of these nanoparticles and targeting to individual cell and sub-cellular compartment is essential.Objective:The aim of the current study is to evaluate the intracellular uptake of these NPs to specific tumor cells in vitro conjugated with folic acid with a goal of enhancing the efficiency of specific targeting to tumor cells.Methods:We synthesized the nanoparticles by a chemical method and characterized by UV-Visible, FTIR, XRD, and TEM.Results & Conclusion:The results revealed the conjugation of Gold and Iron Oxide nanoparticles with folic acid increased the intercellular uptake with high percent compared to non- conjugated nanoparticles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
B. S. Unnikrishnan ◽  
G. U. Preethi ◽  
T. T. Sreelekha

AbstractEmergence of nanotechnology created a drastic change in the field of cancer therapy due to their unique features in drug delivery and imaging. Polysaccharide based nanoparticles have received extensive attention in recent years as promising nanoparticle mediated drug delivery systems. Polysaccharides are endorsed with versatile merits including high drug encapsulation efficiency, efficient drug protection against chemical or enzymatic degradation, unique ability to create a controlled release and cellular internalization. In the current study, we have fabricated doxorubicin-loaded carboxymethylated PST001 coated iron oxide nanoparticles (DOX@CM-PST-IONPs) for better management of cancer. CM-PST coated iron oxide nanoparticles co-encapsulated with chemotherapeutic drug doxorubicin, can be utilized for targeted drug delivery. Biocompatible and non-toxic nanoconjugates was found to be effective in both 2-D and 3-D cell culture system with efficient cancer cell internalization. The bench-marked potential of CM-PIONPs to produce reactive oxygen species makes it a noticeable drug delivery system to compact neoplasia. These nanoconjugates can lay concrete on a better way for the elimination of cancer spheroids and tumor burden.


Sign in / Sign up

Export Citation Format

Share Document