scholarly journals Exploring Deep Learning Techniques in Cloud Computing to Detect Malicious Network Traffic: A Sustainable Computing Approach

2021 ◽  
Vol 11 (5) ◽  
pp. 9-17
Author(s):  
Nagesh Shenoy H ◽  
◽  
K. R. Anil Kumar ◽  
Suchitra N Shenoy ◽  
Abhishek S. Rao ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ming Li ◽  
Dezhi Han ◽  
Xinming Yin ◽  
Han Liu ◽  
Dun Li

With the rapid development and widespread application of cloud computing, cloud computing open networks and service sharing scenarios have become more complex and changeable, causing security challenges to become more severe. As an effective means of network protection, anomaly network traffic detection can detect various known attacks. However, there are also some shortcomings. Deep learning brings a new opportunity for the further development of anomaly network traffic detection. So far, the existing deep learning models cannot fully learn the temporal and spatial features of network traffic and their classification accuracy needs to be improved. To fill this gap, this paper proposes an anomaly network traffic detection model integrating temporal and spatial features (ITSN) using a three-layer parallel network structure. ITSN learns the temporal and spatial features of the traffic and fully fuses these two features through feature fusion technology to improve the accuracy of network traffic classification. On this basis, an improved method of raw traffic feature extraction is proposed, which can reduce redundant features, speed up the convergence of the network, and ease the imbalance of the datasets. The experimental results on the ISCX-IDS 2012 and CICIDS 2017 datasets show that the ITSN can improve the accuracy of anomaly network traffic detection while enhancing the robustness of the detection system and has a higher recognition rate for positive samples.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Sonali Patil

Internet of Things (IoT) and cloud based collaborative platforms are emerging as new infrastructures during recent decades. The classification of network traffic in terms of benign and malevolent traffic is indispensable for IoT-cloud based collaborative platforms to utilize the channel capacity optimally for transmitting the benign traffic and to block the malicious traffic. The traffic classification mechanism should be dynamic and capable enough to classify the network traffic in a quick manner, so that the malevolent traffic can be identified in earlier stages and benign traffic can be channelized to the destined nodes speedily. In this paper, we are presenting deep learning recurrent LSTM based technique to classify the traffic over IoT-cloud platforms. Machine learning techniques (MLTs) have also been employed for comparison of the performance of these techniques with the proposed LSTM RNet classification method. In the proposed research work, network traffic is classified into three classes namely Tor-Normal, NonTor-Normal and NonTor-Malicious traffic. The research outcome shows that the proposed LSTM RNet classify the traffic accurately and also helps in reducing the network latency and in enhancing the data transmission rate as well as network throughput.


2018 ◽  
Vol 103 ◽  
pp. 239-248 ◽  
Author(s):  
Weishan Zhang ◽  
Gaowa Wulan ◽  
Jia Zhai ◽  
Liang Xu ◽  
Dehai Zhao ◽  
...  

2019 ◽  
Vol 7 (5) ◽  
pp. 211-214
Author(s):  
Nidhi Thakkar ◽  
Miren Karamta ◽  
Seema Joshi ◽  
M. B. Potdar

Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Sign in / Sign up

Export Citation Format

Share Document