The Ethics of Human Tripronuclear Zygotes as Germline Editing Subjects

2019 ◽  
Vol 19 (3) ◽  
pp. 429-442
Author(s):  
Jeanatan Hall ◽  

Despite great interest in the field of gene editing, sparked by the advent of CRISPR/Cas9-mediated applications, the personhood of tripronuclear zygotes has not been addressed appropriately. 3PN zygotes are discarded as medical waste, and their use as models for human genome editing is becoming increasing common. 3PN zygotes possess an extra set of chromosomes, which often leads to severe genetic abnormalities; they are dismissed as “nonviable embryos” and treated as an ethically acceptable alternative to human embryonic research. However, given the development cycle of 3PN zygotes and the qualifications for human personhood assessed, there is compelling evidence that 3PN zygotes are indeed human persons. Although genetically disadvantaged, they deserve the same respect as do genetically normal human zygotes.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 281
Author(s):  
Catherine Baker ◽  
Matthew S. Hayden

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research.  We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.


Author(s):  
Dariush D. FARHUD ◽  
Marjan ZARIF-YEGANEH

Over the last few years, the development of genome editing has revolutionized research on the human genome. Recent advances in developing programmable nucleases, such as meganucleases, ZFNs, TALENs and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas, has greatly expedited the progress of gene editing from concept to clinical practice. The CRISPR has advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Eight years after CRISPR application for human genome edition by Emmanuelle Charpentier and Jennifer A. Doudna, the 2020 Nobel Prize in Chemistry has been jointly given to them for development of CRISPR-Cas9 gene editing, allows scientists to precisely cut and edit of DNA.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 281
Author(s):  
Catherine Baker ◽  
Matthew S. Hayden

The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized gene editing research. Through the repurposing of programmable RNA-guided CRISPR-associated (Cas) nucleases, CRISPR-based genome editing systems allow for the precise modification of specific sites in the human genome and inspire novel approaches for the study and treatment of inherited and acquired human diseases. Here, we review how CRISPR technologies have stimulated key advances in dermatologic research.  We discuss the role of CRISPR in genome editing for cutaneous disease and highlight studies on the use of CRISPR-Cas technologies for genodermatoses, cutaneous viruses and bacteria, and melanoma. Additionally, we examine key limitations of current CRISPR technologies, including the challenges these limitations pose for the widespread therapeutic application of CRISPR-based therapeutics.


2021 ◽  
Vol 7 (7) ◽  
pp. 505
Author(s):  
Ping Zhang ◽  
Yu Wang ◽  
Chenxi Li ◽  
Xiaoyu Ma ◽  
Lan Ma ◽  
...  

Cryptococcus neoformans and Cryptococcus deneoformans are opportunistic fungal pathogens found worldwide that are utilized to reveal mechanisms of fungal pathogenesis. However, their low homologous recombination frequency has greatly encumbered genetic studies. In preliminary work, we described a ‘suicide’ CRISPR-Cas9 system for use in the efficient gene editing of C. deneoformans, but this has not yet been used in the C. neoformans strain. The procedures involved in constructing vectors are time-consuming, whether they involve restriction enzyme-based cloning of donor DNA or the introduction of a target sequence into the gRNA expression cassette via overlap PCR, as are sophisticated, thus impeding their widespread application. Here, we report the optimized and simplified construction method for all-in-one CRISPR-Cas9 vectors that can be used in C. neoformans and C. deneoformans strains respectively, named pNK003 (Genbank: MW938321) and pRH003 (Genbank: KX977486). Taking several gene manipulations as examples, we also demonstrate the accuracy and efficiency of the new simplified all-in-one CRISPR-Cas9 genome editing tools in both Serotype A and Serotype D strains, as well as their ability to eliminate Cas9 and gDNA cassettes after gene editing. We anticipate that the availability of new vectors that can simplify and streamline the technical steps for all-in-one CRISPR-Cas9 construction could accelerate genetic studies of the Cryptococcus species.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Menglong Chen ◽  
Hui Shi ◽  
Shixue Gou ◽  
Xiaomin Wang ◽  
Lei Li ◽  
...  

Abstract Background Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. Methods In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46–54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Results Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. Conclusions We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.


2019 ◽  
Vol 20 (15) ◽  
pp. 3623 ◽  
Author(s):  
Tobias Bruegmann ◽  
Khira Deecke ◽  
Matthias Fladung

CRISPR/Cas9 has become one of the most promising techniques for genome editing in plants and works very well in poplars with an Agrobacterium-mediated transformation system. We selected twelve genes, including SOC1, FUL, and their paralogous genes, four NFP-like genes and TOZ19 for three different research topics. The gRNAs were designed for editing, and, together with a constitutively expressed Cas9 nuclease, transferred either into the poplar hybrid Populus × canescens or into P. tremula. The regenerated lines showed different types of editing and revealed several homozygous editing events which are of special interest in perennial species because of limited back-cross ability. Through a time series, we could show that despite the constitutive expression of the Cas9 nuclease, no secondary editing of the target region occurred. Thus, constitutive Cas9 expression does not seem to pose any risk to additional editing events. Based on various criteria, we obtained evidence for a relationship between the structure of gRNA and the efficiency of gene editing. In particular, the GC content, purine residues in the gRNA end, and the free accessibility of the seed region seemed to be highly important for genome editing in poplars. Based on our findings on nine different poplar genes, efficient gRNAs can be designed for future efficient editing applications in poplars.


2021 ◽  
pp. 1-28
Author(s):  
Ya-Wen Lei

Abstract Literature on scientific controversies has inadequately attended to the impact of globalization and, more specifically, the emergence of China as a leader in scientific research. To bridge this gap in the literature, this article develops a theoretical framework to analyse global scientific controversies surrounding research in China. The framework highlights the existence of four overlapping discursive arenas: China's national public sphere and national expert sphere, the transnational public sphere and the transnational expert sphere. It then examines the struggles over inclusion/exclusion and publicity within these spheres as well as the within- and across-sphere effects of such struggles. Empirically, the article analyses the human genome editing controversy surrounding research conducted by scientists in China between 2015 and 2019. It shows how elite scientists negotiated expert–public relationships within and across the national and transnational expert spheres, how unexpected disruption at the nexus of the four spheres disrupted expert–public relationships as envisioned by elite experts, and how the Chinese state intervened to redraw the boundary between openness and secrecy at both national and transnational levels.


Sign in / Sign up

Export Citation Format

Share Document