scholarly journals Heterogeneity in fine root respiration of six subtropical tree species

2012 ◽  
Vol 32 (14) ◽  
pp. 4363-4370
Author(s):  
郑金兴 ZHENG Jinxing ◽  
熊德成 XIONG Decheng ◽  
黄锦学 HUANG Jinxue ◽  
杨智杰 YANG Zhijie ◽  
卢正立 LU Zhengli ◽  
...  
2021 ◽  
Author(s):  
Marili Sell ◽  
Ivika Ostonen ◽  
Gristin Rohula-Okunev ◽  
Azadeh Rezapour ◽  
Priit Kupper

<p>Global climate change scenarios predict increasing air temperature, enhanced precipitation and air humidity for Northern latitudes. We investigated the effects of elevated air relative humidity (RH) and different inorganic nitrogen sources (NO<sub>3</sub><sup>-</sup>, NH<sub>4</sub><sup>+</sup>) on above- and belowground traits in different tree species, with particular emphasis on rhizodeposition rates. Silver birch, hybrid aspen and Scots pine saplings were grown in PERCIVAL growth chambers with stabile temperature, light intensity and two different air humidity conditions: moderate (mRH, 65% at day and 80% at night) and elevated (eRH, 80% at day and night). The collection of fine root exudates was conducted by a culture-based cuvette method and total organic carbon content was determined by Vario TOC analyser. Fine root respiration was measured with an infra-red gas analyser CIRAS 2.  </p><p>We analysed species-specific biomass allocation, water and rhizodeposition fluxes, foliar and fine root traits in response to changing environmental conditions. The eRH significantly decreased the transpiration flux in all species. In birch the transpiration flux was also affected by the nitrogen source. The average carbon exudation rate for aspen, birch and pine varied from 2 to 3  μg C g<sup>-1</sup> day <sup>-1</sup>. The exudation rates for deciduous tree species tended to increase at eRH, while conversely decreased for coniferous trees (p=0.045), coinciding with the changes in biomass allocation. C flux released by fine root respiration varied more than the fine root exudation, whereas the highest root respiration was found in silver birch and lowest in aspen. At eRH the above and belowground biomass ratio in aspen increased, at the expense of decreased root biomass and root respiration.  </p><p>Moreover, eRH significantly affected fine root morphology, whereas the response of specific root area was reverse for deciduous and coniferous tree species. However, fine roots with lower root tissue density had higher C exudation rate. Our findings underline the importance of considering species-specific differences by elucidating tree’s acclimation to environmental factors and their interactions.   </p>


2006 ◽  
Vol 288 (1-2) ◽  
pp. 155-171 ◽  
Author(s):  
Zhengquan Wang ◽  
Dali Guo ◽  
Xiangrong Wang ◽  
Jiacun Gu ◽  
Li Mei

2021 ◽  
Author(s):  
Marili Sell ◽  
Ivika Ostonen ◽  
Gristin Rohula-Okunev ◽  
Linda Rusalepp ◽  
Azadeh Rezapour ◽  
...  

Abstract Global climate change scenarios predict an increase in air temperature, precipitation, and air humidity for northern latitudes. Elevated air humidity may significantly reduce the water flux through forest canopies and affect interactions between water and nutrient uptake. However, we have limited understanding of how altered transpiration would affect root respiration and carbon (C) exudation as fine root morphology acclimates to different water flux. We investigated the effects of elevated air relative humidity (eRH) and different inorganic nitrogen sources (NO3− and NH4+) on above and belowground traits in hybrid aspen (Populus × wettsteinii Hämet-Ahti), silver birch (Betula pendula Roth.), and Scots pine (Pinus sylvestris L.) grown under controlled climate chamber conditions. The eRH significantly decreased the transpiration flux in all species, decreased root mass-specific exudation in pine, and increased root respiration in aspen. eRH also affected fine root morphology, with specific root area increasing for birch but decreasing in pine. The species comparison revealed that pine had the highest C exudation, while birch had the highest root respiration rate. Both humidity and nitrogen treatments affected the share of absorptive and pioneer roots within fine roots; however, the response was species-specific. The proportion of absorptive roots was highest in birch and aspen, the share of pioneer roots was greatest in aspen, and the share of transport roots was greatest in pine. Fine roots with lower root tissue density were associated with pioneer root tips and had a higher C exudation rate. Our findings underline the importance of considering species-specific differences in relation to air humidity and soil nitrogen availability that interactively affect the C input–output balance. We highlight the role of changes in the fine root functional distribution as an important acclimation mechanism of trees in response to environmental change.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1227
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Takuo Hishi ◽  
Ayumi Katayama ◽  
Masaaki Chiwa ◽  
...  

Tree root system development alters forest soil properties, and differences in root diameter frequency and root length per soil volume reflect differences in root system function. In this study, the relationship between vertical distribution of very fine root and soil water content was investigated in intact tree and cut tree areas. The vertical distribution of root density with different diameter classes (very fine <0.5 mm and fine 0.5–2.0 mm) and soil water content were examined along a slope with two coniferous tree species, Cryptomeria japonica (L.f.) D. Don and Chamaecyparis obtusa (Siebold et Zucc.) Endl. The root biomass and length density of very fine roots at soil depth of 0–5 cm were higher in the Ch. obtusa intact tree plot than in the Cr. japonica intact plot. Tree cutting caused a reduction in the biomass and length of very fine roots at 0–5 cm soil depth, and an increment in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot one year after cutting. However, very fine root density of the Cr. japonica intact tree plot was quite low and the soil water content in post-harvest areas did not change. The increase in soil water content at 5–30 cm soil depth of the Ch. obtusa cut tree plot could be caused by the decrease in very fine roots at 0–5 cm soil depth. These results suggest that the distribution of soil water content was changed after tree cutting of Ch. obtusa by the channels generated by the decay of very fine roots. It was also shown that differences in root system characteristics among different tree species affect soil water properties after cutting.


2001 ◽  
Vol 31 (5) ◽  
pp. 786-796 ◽  
Author(s):  
Britta Widén ◽  
Hooshang Majdi

Soil CO2 efflux and respiration of excised roots were measured with a LI-COR 6200 at three sites in a mixed forest (60°05'N, 17°3'E), from May to October 1999, both day and night. Fine-root (<5 mm in diameter) respiration was measured at ambient root temperature and soil CO2 partial pressure, and the roots were analysed for nitrogen (N) concentration. Root-density data obtained from soil cores were used to estimate fine-root biomass. Coarse-root respiration was estimated using stand data, literature data, and allometric relationships. Soil CO2 efflux, 3.0–7.0 µmol·m–2·s–1, differed between sites but showed no diurnal variation. Maximum values were obtained in July through August. Fine-root respiration, 0.3–4.7 nmol·g–1·s–1, decreased after peaking in early July and showed no diurnal variation. The seasonal mean was lowest at the South site, where also root distribution patterns were different and root N concentrations were lower. Fine-root respiration increased with root N concentration; however, the relationship was very weak, since the variation in root N concentration between sites and times of year was small. Both soil CO2 efflux and fine-root respiration increased exponentially with soil and root temperature, respectively, although fine-root respiration was twice as sensitive. The percentage of soil CO2 efflux emanating from roots was 33–62% in May, thereafter decreasing to 12–16% in October. This, in combination with larger temperature sensitivity for fine-root respiration, is suggested to cause the temperature sensitivity of soil CO2 efflux to diminish over the season.


Sign in / Sign up

Export Citation Format

Share Document