Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study inFagus sylvaticasaplings

2015 ◽  
Vol 156 (3) ◽  
pp. 294-310 ◽  
Author(s):  
Antonino Di Iorio ◽  
Valentino Giacomuzzi ◽  
Donato Chiatante
2021 ◽  
Author(s):  
Marili Sell ◽  
Ivika Ostonen ◽  
Gristin Rohula-Okunev ◽  
Linda Rusalepp ◽  
Azadeh Rezapour ◽  
...  

Abstract Global climate change scenarios predict an increase in air temperature, precipitation, and air humidity for northern latitudes. Elevated air humidity may significantly reduce the water flux through forest canopies and affect interactions between water and nutrient uptake. However, we have limited understanding of how altered transpiration would affect root respiration and carbon (C) exudation as fine root morphology acclimates to different water flux. We investigated the effects of elevated air relative humidity (eRH) and different inorganic nitrogen sources (NO3− and NH4+) on above and belowground traits in hybrid aspen (Populus × wettsteinii Hämet-Ahti), silver birch (Betula pendula Roth.), and Scots pine (Pinus sylvestris L.) grown under controlled climate chamber conditions. The eRH significantly decreased the transpiration flux in all species, decreased root mass-specific exudation in pine, and increased root respiration in aspen. eRH also affected fine root morphology, with specific root area increasing for birch but decreasing in pine. The species comparison revealed that pine had the highest C exudation, while birch had the highest root respiration rate. Both humidity and nitrogen treatments affected the share of absorptive and pioneer roots within fine roots; however, the response was species-specific. The proportion of absorptive roots was highest in birch and aspen, the share of pioneer roots was greatest in aspen, and the share of transport roots was greatest in pine. Fine roots with lower root tissue density were associated with pioneer root tips and had a higher C exudation rate. Our findings underline the importance of considering species-specific differences in relation to air humidity and soil nitrogen availability that interactively affect the C input–output balance. We highlight the role of changes in the fine root functional distribution as an important acclimation mechanism of trees in response to environmental change.


1991 ◽  
Vol 21 (11) ◽  
pp. 1589-1595 ◽  
Author(s):  
Wendell P. Cropper Jr. ◽  
Henry L. Gholz

Respiration of needles and surface fine roots was measured in a north central Florida slash pine (Pinuselliottii Engelm. var. elliottii) plantation. A controlled temperature chamber system was used to estimate respiration rates and Q10 values of insitu tissues over a range of 10 to 35 °C. Respiration rates did not differ significantly among seasons, fertilized versus unfertilized plots, or time of day in a diurnal time series (needles). Needle respiration from the lower canopy was less than that from the upper canopy. Fine root respiration measurements were consistent with previously made estimates based on soil CO2 partitioning and trenched plots.


2013 ◽  
Vol 199 (2) ◽  
pp. 420-430 ◽  
Author(s):  
Douglas J. Lynch ◽  
Roser Matamala ◽  
Colleen M. Iversen ◽  
Richard J. Norby ◽  
Miquel A. Gonzalez-Meler

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 511a-511
Author(s):  
L.H. Comas ◽  
D.M. Eissenstat ◽  
A.N. Lakso ◽  
R. Dunst

Improved cultural practices in grape require a better understanding of root growth and physiology. Seasonal root dynamics were examined in mature `Concord' vines with balanced or minimal-pruning, and with or without supplemental irrigation in Fredonia, N.Y. Fine roots were continuously produced during the growing season starting in mid-June around time of bloom. Roots began to die in September at verasion. Minimal-pruned vines produced more roots than balanced-pruned vines, with the minimal-pruned/unirrigated vines producing the most roots. Irrigation and pruning delayed fine root production at the beginning of the growing season. Peak fine root flush was 16 June to 21 July 1997 for the minimal-pruned/unirrigated treatment, while peak flush was 7 July to 2 Sept. 1997 for balanced-pruned/irrigated treatment. In minimal-pruned vines, many roots were observed down to depths of 120 cm. In contrast, balanced-pruned vines had very few fine roots deeper than 40 cm. From initial observations, median lifespan of fine roots was 5 to 9.5 weeks, depending on treatment and depth in soil. Fine roots lived longer in the top 15-cm than in the 16- to 30-cm layer of soil in all treatments. Both minimal pruning and irrigation increased root lifespan. Fine roots had the shortest lifespan in the balanced-pruned/unirrigated treatment and the longest lifespan in the minimal-pruned/irrigated treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
G. Grunewaldt-Stöcker ◽  
C. Popp ◽  
A. Baumann ◽  
S. Fricke ◽  
M. Menssen ◽  
...  

AbstractReplant disease is a worldwide phenomenon affecting various woody plant genera and species, especially within the Rosaceae. Compared to decades of intensive studies regarding replant disease of apple (ARD), the replant disease of roses (RRD) has hardly been investigated. The etiology of RRD is also still unclear and a remedy desperately needed. In greenhouse pot trials with seedlings of the RRD-sensitive rootstock Rosa corymbifera ‘Laxa’ cultured in replant disease affected soils from two different locations, early RRD symptom development was studied in fine roots. In microscopic analyses we found similarities to ARD symptoms with regards to structural damages, impairment in the root hair status, and necroses and blackening in the cortex tissue. Examinations of both whole mounts and thin sections of fine root segments revealed frequent conspicuous fungal infections in association with the cellular disorders. Particularly striking were fungal intracellular structures with pathogenic characteristics that are described for the first time. Isolated fungi from these tissue areas were identified by means of ITS primers, and many of them were members of the Nectriaceae. In a next step, 35 of these isolates were subjected to a multi-locus sequence analysis and the results revealed that several genera and species were involved in the development of RRD within a single rose plant. Inoculations with selected single isolates (Rugonectria rugulosa and Ilyonectria robusta) in a Perlite assay confirmed their pathogenic relationship to early necrotic host plant reactions, and symptoms were similar to those exhibited in ARD.


1992 ◽  
Vol 22 (11) ◽  
pp. 1575-1582 ◽  
Author(s):  
Adrián Ares ◽  
Norman Peinemann

A study was conducted to determine the amounts and vertical distribution of fine roots <2 mm as a function of site quality in a temperate, hilly zone of Argentina. Fine roots were sampled in autumn from 0.2-ha plots established in 12 coniferous plantations of Pinushalepensis Mill., Pinusradiata D. Don, Cedrusdeodara (D. Don) G. Don, and Cupressussempervirens L.f. horizontalis, located in Sierra de la Ventana, southern Buenos Aires. Generally, root density was found to be higher under low-growth stands. The distance from a tree sometimes had an effect on root density, but no clear pattern within stands could be observed. Root density commonly decreased with depth, but slight irregularities in some profiles were observed. Site quality and soil type influenced root distribution. Belowground biomass up to a depth of 50 cm ranged from 1600 to 9800 kg•ha−1 in high-growth stands and from 5400 to 40 700 kg•ha−1 in low-growth stands. Soil organic matter content provided the best correlation with root density. A possible practical implication would be the use of indices related to vertical distribution of organic matter, among other variables, as complementary estimators of effective depth of rooting. The results strongly suggest that trees maintain a large fine-root system in poor sites at the expense of aboveground growth.


1998 ◽  
Vol 78 (1) ◽  
pp. 163-169 ◽  
Author(s):  
J. S. Bhatti ◽  
N. W. Foster ◽  
P. W. Hazlett

Vertical distribution of fine root biomass and nutrient content was examined within a black spruce (Picea mariana) stand growing on a boreal peat soil in northeastern Ontario. The influence of site physical and chemical properties on fine root biomass production was assessed. More then 80% of the fine roots were present in moss plus the top 10 cm of peat where nutrients and aeration are most favourable. The fine root biomass (W/V) was significantly higher with alder (5.9 kg m−3) (Alnus rugosa) as understory vegetation compared to non-alder locations (2.9 kg m−3). Total nutrient content in fine roots was 54, 3.2, 5.4, 63 and 5.7 kg ha−1 on the alder site and 20, 1.4, 2.3, 28 and 4.2 kg ha−1 of N, P, K, Ca, and Mg on the non-alder site, respectively. The mass (W/V) of nutrients in fine roots was strongly dependent upon the availability of nutrients in the peat. Fine root content had a strong positive relationship with peat available P and exchangeable K contents suggesting that P and K may be limiting nutrients for black spruce in this peat soil. Key words: Nitrogen, phosphorus, potassium, boreal peatlands, aeration, water table


2009 ◽  
Vol 27 (4) ◽  
pp. 229-233 ◽  
Author(s):  
Gary W. Watson

Abstract Exposed fine roots are subject to desiccation, which may affect their survival as well as new root growth following bare root transplanting. Fine roots of dormant 1-year-old green ash (Fraxinus pennsylvanica) and sugar maple (Acer saccharum) seedlings, subjected to desiccation treatments of 0, 1, 2, or 3 hours in December and March, lost up to 82 percent of their water. Root electrolyte leakage, a measure of cell damage, tripled after three hours of desiccation. The increase was moderately, but significantly, greater in March for both species. Desiccation treatments had no effect on fine root survival. Growth of new roots (RGP) was also unaffected by desiccation treatments. RGP of maple was greater in March than December, but not ash.


Sign in / Sign up

Export Citation Format

Share Document