The runoff curve number of SCS-CN method in loess hilly region

2021 ◽  
Vol 41 (10) ◽  
Author(s):  
冯憬,卫伟,冯青郁 FENG Jing
Author(s):  
F. C. Cayson ◽  
C. L. Patiño ◽  
M. J. L. Flores

Abstract. Cebu, with its growing development and increasing demand for water, needs tools and inputs to efficiently understand and manage its water resources. Rainfall runoff models were developed to model surface runoff which may be used to assess water availability. Soil Conservation System (SCS) Runoff Curve Number (CN) method predicts runoff based on an empirical curve number for ungauged watersheds. This study aims to estimate the amount of runoff for the catchments of Cebu Island using the SCS-CN Runoff technique. The data needed for the application of the method in this study were rainfall distribution data, land use/land cover and soil texture for curve number assignment, LiDAR DEM for the delineation of the catchments, and supporting runoff measurements from a different runoff estimation model for assessment of the results. The collected data were prepared by assigning the mean statistics of the rainfall distribution and the composite curve number for each catchment using Geographic Information System (GIS). The calculation of the runoff was also done using the same framework. Maps representing Cebu Island’s catchments’ runoff estimates were produced. Since observed runoff data were unavailable, the results were verified by comparing the SCS-CN estimated runoff to the results of a physically-based distributed hydrologic and hydraulics modelling software, FLO-2D. The SCS-CN estimations were found to coincide with the FLO-2D runoff estimates based on various statistical assessments. Although the results may have higher uncertainties due to the unavailability of observed runoff data, the SCS-CN Runoff method provided relevant results to that of a complex simulation model. Thus, the method may be applied to estimate runoff of ungauged catchments of Cebu Island, the results of which could provide relevant information for water resource management.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 704
Author(s):  
Hussein Al-Ghobari ◽  
Ahmed Z. Dewidar

An increasing scarcity of water, as well as rapid global climate change, requires more effective water conservation alternatives. One promising alternative is rainwater harvesting (RWH). Nevertheless, the evaluation of RWH potential together with the selection of appropriate sites for RWH structures is significantly difficult for the water managers. This study deals with this difficulty by identifying RWH potential areas and sites for RWH structures utilizing geospatial and multi-criteria decision analysis (MCDA) techniques. The conventional data and remote sensing data were employed to set up needed thematic layers using ArcGIS software. The soil conservation service curve number (SCS-CN) method was used to determine surface runoff, centered on which yearly runoff potential map was produced in the ArcGIS environment. Thematic layers such as drainage density, slope, land use/cover, and runoff were allotted appropriate weights to produced RWH potential areas and zones appropriate for RWH structures maps of the study location. Results analysis revealed that the outcomes of the spatial allocation of yearly surface runoff depth ranging from 83 to 295 mm. Moreover, RWH potential areas results showed that the study areas can be categorized into three RWH potential areas: (a) low suitability, (b) medium suitability, and (c) high suitability. Nearly 40% of the watershed zone falls within medium and high suitability RWH potential areas. It is deduced that the integrated MCDA and geospatial techniques provide a valuable and formidable resource for the strategizing of RWH within the study zones.


1979 ◽  
Vol 105 (4) ◽  
pp. 439-441 ◽  
Author(s):  
Robert E. Rallison ◽  
Roger C. Cronshey

Sign in / Sign up

Export Citation Format

Share Document