scholarly journals A new physeteroid from the late Miocene of Peru expands the diversity of extinct dwarf and pygmy sperm whales (Cetacea: Odontoceti: Kogiidae)

Author(s):  
Alberto COLLARETA ◽  
Olivier LAMBERT ◽  
Christian de MUIZON ◽  
Aldo Marcelo BENITES PALOMINO ◽  
Mario URBINA ◽  
...  

Nowadays, the odontocete family Kogiidae is monotypic and only includes two species of diminutive relatives of the great sperm whale Physeter Linnaeus, 1758. Conversely, a growing body of extinct species indicates that kogiids were diverse and disparate during the late Neogene. The fossil record of Kogiidae is, to date, represented by several cranial specimens from Mio-Pliocene localities of the Northern Hemisphere, with the significant Southern Hemisphere exception of the Pisco Formation of Peru, from which two genera were known so far, including Scaphokogia Muizon, 1988, a highly idiosyncratic form characterised by a distinctly spoon-shaped dorsal surface of the neurocranium and a downturned semicylindrical rostrum, which is even placed in its own subfamily Scaphokogiinae. Here, we report on two skulls of Kogiidae from the Messinian (upper Miocene) portion of the Pisco Formation exposed in the East Pisco Basin. These two skulls are referred to the new taxon Platyscaphokogia landinii n. gen., n. sp., which our phylogenetic analysis recovers as sister group of Scaphokogia, within the subfamily Scaphokogiinae. Although Platyscaphokogia n. gen. shares with Scaphokogia a remarkably spoon-like dorsal aspect of the neurocranium, it retains a non-pachyostotic, dorsoventrally thin rostrum that distinctly points anteriorly; as such, Platyscaphokogia n. gen. might be regarded as testifying an early stage in the evolution of the scaphokogiine cranial anatomy. Morphofunctional and palaeoecological considerations allow for hypothesising that Platyscaphokogia n. gen. was a raptorial physeteroid that foraged along the water column in relatively open-sea palaeoenvironments. In conclusion, our finds expand the palaeodiversity of Kogiidae, as well as our knowledge on the late Miocene sperm whales of the southeastern Pacific, and further suggest that the fossil content of the East Pisco Basin is crucial for reconstructing the Neogene evolutionary history of physeteroids.

Fossil Record ◽  
2017 ◽  
Vol 20 (2) ◽  
pp. 259-278 ◽  
Author(s):  
Alberto Collareta ◽  
Olivier Lambert ◽  
Christian de Muizon ◽  
Mario Urbina ◽  
Giovanni Bianucci

Abstract. Among odontocetes, members of the family Kogiidae (pygmy and dwarf sperm whales) are known as small-sized and in many respects enigmatic relatives of the great sperm whale Physeter macrocephalus. Most of the still scanty fossil record of Kogiidae is represented by isolated skulls and ear bones from Neogene deposits of the Northern Hemisphere, with the significant exception of Scaphokogia, a highly autapomorphic genus from late Miocene deposits of the Pisco Formation exposed along the southern coast of Peru. Here we report on a new fossil kogiid from Aguada de Lomas, a site where the late Miocene beds of the Pisco Formation are exposed. This specimen consists of an almost complete cranium representing a new taxon of Kogiidae: Koristocetus pescei gen. et sp. nov. Koristocetus mainly differs from extant Kogia spp. by displaying a larger temporal fossa and well-individualized dental alveoli on the upper jaws. Coupled with a relatively elongated rostrum, these characters suggest that Koristocetus retained some degree of raptorial feeding abilities, contrasting with the strong suction feeding specialization seen in Recent kogiids. Our phylogenetic analysis recognizes Koristocetus as the earliest branching member of the subfamily Kogiinae. Interestingly, Koristocetus shared the southern coast of present-day Peru with members of the genus Scaphokogia, whose unique convex rostrum and unusual neurocranial morphology seemingly indicate a peculiar foraging specialization that has still to be understood. In conclusion, Koristocetus evokes a long history of high diversity, morphological disparity, and sympatric habits in fossil kogiids, thus suggesting that our comprehension of the evolutionary history of pygmy and dwarf sperm whales is still far from being exhaustive.


Author(s):  
Apolline ALFSEN ◽  
Mark BOSSELAERS ◽  
Olivier LAMBERT

In spite of a continuously expanding physeteroid fossil record, our understanding of the origin and early radiation of the two modern sperm whale families Kogiidae Gill, 1871 (including the pygmy and dwarf sperm whales, Kogia spp.) and Physeteridae Gray, 1821 (including the great sperm whale, Physeter Linnaeus, 1758) remains limited, especially due to the poorly resolved phylogenetic relationships of a number of extinct species. Among those, based on fragmentary cranial material from the late early to middle Miocene of Antwerp (Belgium, North Sea basin), the small-sized Thalassocetus antwerpiensis Abel, 1905 has been recognized for some time as the earliest branching kogiid. The discovery of a new diminutive physeteroid cranium from the late Miocene (Tortonian) of Antwerp leads to the description and comparison of a close relative of T. antwerpiensis. Thanks to the relatively young ontogenetic stage of this new specimen, the highly modified plate-like bones making the floor of its supracranial basin could be individually removed, a fact that greatly helped deciphering their identity and geometry. Close morphological similarities with T. antwerpiensis allow for the reassessment of several facial structures in the latter; the most important reinterpretation is the one of a crest-like structure, previously identified as a sagittal facial crest, typical for kogiids, and here revised as the left posterolateral wall of the supracranial basin, comprised of the left nasal (lost in kogiids for which the postnarial region is known) and the left maxilla. Implemented in a phylogenetic analysis, the new anatomical interpretations result in the new Belgian specimen and T. antwerpiensis being recovered as sister-groups in the family Physeteridae. Consequently, the geologically oldest kogiids are now dated from the Tortonian, further extending the ghost lineage separating these early late Miocene kogiid records from the estimated latest Oligocene to earliest Miocene divergence of kogiids and physeterids.


2021 ◽  
Author(s):  
Aldo Benites‐Palomino ◽  
Jorge Vélez‐Juarbe ◽  
Alberto Collareta ◽  
Diana Ochoa ◽  
Ali Altamirano ◽  
...  

Author(s):  
Florencia Paolucci ◽  
Marta S Fernández ◽  
Mónica R Buono ◽  
José I Cuitiño

Abstract The giant sperm whale (Physeter macrocephalus) and the dwarf (Kogia sima) and pygmy (Kogia breviceps) sperm whales represent the only three extant species of physeteroids. This group has diversified during the Miocene, and the Miocene marine sediments of Patagonia (Argentina) hold one of the most important fossil records of physeteroids. In particular, ‘Aulophyseter’ rionegrensis (Gran Bajo del Gualicho Formation, Miocene), described based on two subcomplete skulls nearly a century ago, has been a problematic taxon because its generic assignation has been questioned in different works. Besides, recent phylogenetic analyses have also failed to recover the putative congeneric sister-group relationship between ‘A.’ rionegrensis and A. morricei (the type species). In this contribution, we re-describe ‘A.’ rionegrensis, evaluate its phylogenetic position and provide a taxonomic review of Aulophyseter. A detailed morphological comparison between ‘A.’ rionegrensis and A. morricei reveals several anatomical differences between them. Phylogenetic analyses recover ‘A.’ rionegrensis as a crown physeteroid, nested within Physeteridae, but not closely related to A. morricei. We provide the new generic name Cozzuoliphyseter gen. nov. for its reception. A preliminary re-assessment of material previously referred to Aulophyseter indicates that A. mediatlanticus, and also historical material of A. morricei, need to be reviewed.


Fossil Record ◽  
2021 ◽  
Vol 24 (2) ◽  
pp. 275-285
Author(s):  
Stephen J. Godfrey ◽  
Carolina S. Gutstein ◽  
Donald J. Morgan III

Abstract. A new monotypic genus of Neogene odontocete (Isoninia borealis) is named on the basis of a partial skull (CMM-V-4061). The holotype was found on the riverbed of the Meherrin River (North Carolina, USA) and probably originated from the Miocene marine Eastover Formation. Deep interdigitation of the cranial sutures indicates that this individual was mature. The new taxon differs from all other delphinidans in the unique combination of the following characters: anteriorly retracted premaxillae and maxillae; premaxillae not contacting nasals; thick nasals with ventrolateral margins deeply imbedded within corresponding troughs in the frontals (this is an apomorphy); nasals with transversely convex dorsal surface; nearly symmetrical vertex; os suturarum (or interparietal or extra folds of the frontals) at the vertex; large dorsal infraorbital foramen level with the posterior margin of the external bony nares; and a postorbital recess on the ventrolateral face of the frontal below and behind the postorbital process of the frontal. This odontocete exhibits two small but pronounced concavities on the cerebral face of the frontal/presphenoid that are presumed to have held vestigial olfactory bulbs in life. Inioidea is only diagnosed by a single unequivocal synapomorphy: width across nasals and nares subequal. Isoninia shares this feature with other inioids and forms the basis for the placement of Isoninia within this clade. A relatively high vertex coupled with a supraoccipital that is deeply wedged between the frontals suggests placement of this new inioid species within the family Iniidae. This is the second inioid described from the Eastover Formation (the other being Meherrinia isoni). This new species adds new cranial morphology and a new combination of cranial characters to this taxonomically small but growing group of mostly marine and mostly Western Hemisphere odontocetes (urn:lsid:zoobank.org:pub:E8B817CA-B250-42B3-9365-36EFBFE351C9).


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Joëlle De Weerdt ◽  
Eric Angel Ramos ◽  
Etienne Pouplard ◽  
Marc Kochzius ◽  
Phillip Clapham

AbstractDocumenting marine mammal strandings provides important information needed to understand the occurrence and distribution patterns of species. Here, we report on strandings of cetaceans on the Pacific (n = 11) and Caribbean (n = 2) coasts of Nicaragua, documented opportunistically from 2014 to 2021. Strandings included three species of baleen whale (blue whale Balaenoptera musculus, Bryde’s whale Balaenoptera edeni, humpback whale Megaptera novaeangliae) and five species of toothed whale (dwarf sperm whale Kogia sima, Guiana dolphin Sotalia guianensis, pantropical spotted dolphin Stenella attenuata, spinner dolphin Stenella longirostris, Cuvier’s beaked whale Ziphius cavirostris). These are the first published accounts of blue whales, Bryde’s whales, dwarf sperm whales, and Cuvier’s beaked whales in Nicaraguan waters. Limited resources and the advanced decomposition of animals prevented necropsies in most cases, the identification of the causes of mortality in all cases, and the species identification of two dolphins. Information derived from these stranding events offers new insights into the occurrence of marine mammals on the Pacific and Caribbean coasts of Nicaragua and Central America.


2004 ◽  
Vol 35 (1) ◽  
pp. 79-105 ◽  
Author(s):  
Peter Chandler ◽  
Francis Gilbert ◽  
Graham Rotheray

AbstractPlatypezidae occupy an important basal position within the Muscomorpha. However, morphological analyses of larval Platypezidae are incomplete and early stage data is insufficient to inform phylogenetic analysis and recognition of groundplan characters and states within Muscomorpha. For example, knowledge is poor of the characters of respiratory organs, head, head skeleton, thorax and segmental sensilla. In this study we describe and compare these features of 16 species in 11 genera. The head appears as a distinct fleshy organ with atrium and antennae and maxillary organs separated on the dorsal surface. Head skeletons are characterised by an anteriorly projecting labrum and labium with laterally placed mandibles. The prothorax is frequently armoured with sclerotised regions and spicules. A repeated and uniform pattern of up to 11 pairs of sensilla circumvent each thoracic and abdominal segment. Respiratory organs vary little in size and arrangement of spiracular openings. Using a set of 43 larval and puparial characters and based on a Brachyceran outgroup, a sequence of genera is established which places Melanderomyia as the most basal. These results are compared with estimates of phylogeny based on adult characters.


2012 ◽  
Vol 92 (8) ◽  
pp. 1799-1808 ◽  
Author(s):  
Alexandre Gannier ◽  
Estelle Petiau ◽  
Violaine Dulau ◽  
Luke Rendell

Oceanic odontocetes rely on echolocation to forage on pelagic or benthic prey, but their feeding ecology is difficult to study. We studied sperm whale foraging dives during summer in the north-western Mediterranean, using visual and passive acoustic observations. Clicking and creaking activities were recorded during dives of focal whales, at distances <3000 m using a towed hydrophone and DAT recorder. A total of 52 sperm whales were recorded over at least one full dive cycle. Data were obtained for 156 complete dives in total, including sequences of up to nine consecutive dives. Various dive and environmental variables were entered in multiple linear regression and principal components analysis, as well as estimated mass of whales. Creak rate was 0.80 creak/minute on average, with moderate variance. Bigger whales tended to dive longer at greater depths (as suggested by ascent durations), and emitted more creaks during a dive: 20.2 creaks/dive on average for individuals <24 tons, compared to 25.6 creaks/dive for animals >24 tons of estimated mass. For individual whales, creak rates did not vary significantly with size (range 0.78–0.80 creak/minute), but decreased with time of the day, and increased for shorter foraging phases. For different dives, higher creak rates were also observed earlier in the day, and linked to shorter foraging phases and surface durations. Although the exact significance of creak emissions (i.e. foraging attempt or prey capture) is not precisely determined, creak rates may be reliably used to quantify sperm whale foraging when single animal dives can be followed acoustically.


2016 ◽  
Vol 3 (10) ◽  
pp. 160018 ◽  
Author(s):  
Paul M. Oliver ◽  
Peter J. McDonald

Climatic change, and in particular aridification, has played a dominant role in shaping Southern Hemisphere biotas since the mid-Neogene. In Australia, ancient and geologically stable ranges within the vast arid zone have functioned as refugia for populations of mesic taxa extirpated from surrounding areas, yet the extent to which relicts may be linked to major aridification events before or after the Pliocene has not been examined in detail. Here we use molecular phylogenetic and morphological data to show that isolated populations of saxicoline geckos in the genus Oedura from the Australian Central Uplands, formerly confounded as a single taxon, actually comprise two divergent species with contrasting histories of isolation. The recently resurrected Oedura cincta has close relatives occurring elsewhere in the Australian arid biomes with estimated divergence dates concentrated in the early Pliocene. A new taxon (described herein) diverged from all extant Oedura much earlier, well before the end of the Miocene. A review of data for Central Uplands endemic vertebrates shows that for most (including Oedura cincta ), gene flow with other parts of Australia probably occurred until at least the very late Miocene or Pliocene. There are, however, a small number of palaeoendemic taxa—often ecologically specialized forms—that show evidence of having persisted since earlier intensification of aridity in the late Miocene.


Zootaxa ◽  
2017 ◽  
Vol 4254 (5) ◽  
pp. 537 ◽  
Author(s):  
CHIA-HSUAN WEI ◽  
SHEN-HORN YEN

The Epicopeiidae is a small geometroid family distributed in the East Palaearctic and Oriental regions. It exhibits high morphological diversity in body size and wing shape, while their wing patterns involve in various complex mimicry rings. In the present study, we attempted to describe a new genus, and a new species from Vietnam, with comments on two assumed congeneric novel species from China and India. To address its phylogenetic affinity, we reconstructed the phylogeny of the family by using sequence data of COI, EF-1α, and 28S gene regions obtained from seven genera of Epicopeiidae with Pseudobiston pinratanai as the outgroup. We also compared the morphology of the new taxon to other epicopeiid genera to affirm its taxonomic status. The results suggest that the undescribed taxon deserve a new genus, namely Mimaporia gen. n. The species from Vietnam, Mimaporia hmong sp. n., is described as new to science. Under different tree building strategies, the new genus is the sister group of either Chatamla Moore, 1881 or Parabraxas Leech, 1897. The morphological evidence, which was not included in phylogenetic analyses, however, suggests its potential affinity with Burmeia Minet, 2003. This study also provides the first, although preliminary, molecular phylogeny of the family on which the revised systematics and interpretation of character evolution can be based. 


Sign in / Sign up

Export Citation Format

Share Document