DNA Pyrosequencing–Based Identification of Pathogenic Candida Species by Using the Internal Transcribed Spacer 2 Region

2008 ◽  
Vol 132 (4) ◽  
pp. 667-674 ◽  
Author(s):  
Bobby L. Boyanton, Jr ◽  
Ruth Ann Luna ◽  
Lea R. Fasciano ◽  
Kyle G. Menne ◽  
James Versalovic

Abstract Context.—The incidence of infections due to diverse Candida species is increasing, with correspondingly different antifungal susceptibility patterns. Routine yeast identification methods cause significant delays in appropriate patient management. Objective.—A DNA pyrosequencing strategy was evaluated for identification of pathogenic Candida species associated with human infections. Design.—Clinical (n = 51) and commercial (n = 9) Candida isolates were identified in a blinded, parallel study consisting of routine fungal cultures and biochemical analyses in comparison with DNA pyrosequencing. Results.—DNA pyrosequencing yielded species-level identification of all 60 Candida isolates, and sequencing interpretations agreed in all cases with results of biochemical and morphologic testing. Different Candida species were identified, such as C albicans, C dubliniensis, C glabrata, C guilliermondii, C krusei, C lusitaniae, C parapsilosis, and C tropicalis. Automated and manual approaches to DNA sequence interpretation, each coupled with the Identifire identification software, demonstrated 100% agreement with respect to Candida species identification. Twenty-one isolates yielded intraspecies DNA sequence differences (90%–98% nucleic acid sequence identity) by automated interpretation. Sequence differences resulted from single-nucleotide polymorphisms or single-base additions/deletions, in addition to interpretative challenges in homopolymeric tracts. Conclusion.—DNA pyrosequencing coupled with automated DNA sequence alignment provides a practical approach for accurate and timely identification of Candida pathogens. Relatively rapid and facile genotypic studies by DNA pyrosequencing matched the effectiveness of extensive biochemical/morphologic studies for yeast identification.

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S203-S203
Author(s):  
Brenda L Tesini ◽  
Meghan Lyman ◽  
Brendan R Jackson ◽  
Anita Gellert ◽  
William Schaffner ◽  
...  

Abstract Background Multidrug resistant Candida is an increasing concern. C. parapsilosis in particular has decreased in vitro susceptibility to echinocandins. As a result, fluconazole had been favored for C. parapsilosis treatment. However, there is growing concern about increasing azole resistance among Candida species. We report on antifungal susceptibility patterns of C. parapsilosis in the US from 2008 through 2018. Methods Active, population-based surveillance for candidemia through the Centers for Disease Control and Prevention’s (CDC) Emerging Infections Program was conducted between 2008–2018, eventually encompassing 9 states (GA, MD,OR, TN, NY, CA, CO, MN, NM). Each incident isolate was sent to the CDC for species confirmation and antifungal susceptibility testing (AFST). Frequency of resistance was calculated and stratified by year and state using SAS 9.4 Results Of the 8,704 incident candidemia isolates identified, 1,471 (15%) were C. parapsilosis; the third most common species after C. albicans and C. glabrata. AFST results were available for 1,340 C. parapsilosis isolates. No resistance was detected to caspofungin (MIC50 0.25) or micafungin (MIC50 1.00) with only one (< 1%) isolate resistant to anidulafungin (MIC50 1.00). In contrast, 84 (6.3%) isolates were resistant to fluconazole and another 44 (3.3%) isolates had dose-dependent susceptibility to fluconazole (MIC50 1.00). Fluconazole resistance increased sharply from an average of 4% during 2008–2014 to a peak of 14% in 2016 with a subsequent decline to 6% in 2018 (see figure). Regional variation is also observed with fluconazole resistance ranging from 0% (CO, MN, NM) to 42% (NY) of isolates by site. Conclusion The recent marked increase in fluconazole resistance among C. parapsilosis highlights this pathogen as an emerging drug resistant pathogen of concern and the need for ongoing antifungal resistance surveillance among Candida species. Our data support the empiric use of echinocandins for C. parapsilosis bloodstream infections and underscore the need to obtain AFST prior to fluconazole treatment. Furthermore, regional variation in fluconazole resistance emphasizes the importance of understanding local Candida susceptibility patterns. Disclosures Lee Harrison, MD, GSK (Consultant)Merck (Consultant)Pfizer (Consultant)Sanofi Pasteur (Consultant)


2021 ◽  
Vol 29 ◽  
pp. 115-124
Author(s):  
Xinlu Wang ◽  
Ahmed A.F. Saif ◽  
Dayou Liu ◽  
Yungang Zhu ◽  
Jon Atli Benediktsson

BACKGROUND: DNA sequence alignment is one of the most fundamental and important operation to identify which gene family may contain this sequence, pattern matching for DNA sequence has been a fundamental issue in biomedical engineering, biotechnology and health informatics. OBJECTIVE: To solve this problem, this study proposes an optimal multi pattern matching with wildcards for DNA sequence. METHODS: This proposed method packs the patterns and a sliding window of texts, and the window slides along the given packed text, matching against stored packed patterns. RESULTS: Three data sets are used to test the performance of the proposed algorithm, and the algorithm was seen to be more efficient than the competitors because its operation is close to machine language. CONCLUSIONS: Theoretical analysis and experimental results both demonstrate that the proposed method outperforms the state-of-the-art methods and is especially effective for the DNA sequence.


2017 ◽  
Vol 34 (3) ◽  
pp. 171-174 ◽  
Author(s):  
Wadha Alfouzan ◽  
Tahani Al-Enezi ◽  
Ebteehal AlRoomi ◽  
Vayalil Sandhya ◽  
Rachel Chandy ◽  
...  

2020 ◽  
Vol 29 (3) ◽  
pp. 37-45
Author(s):  
Mabrouk M Ghonaim ◽  
Azza Z. Labeeb ◽  
Alyaa I. Eliwa ◽  
Eman H. Salem

Background: Accurate and rapid identification of Candida species is necessary for proper diagnosis and treatment of candidiasis due to emergences of drug-resistant strains especially among immunocompromised patients. Objectives: Identification of Candida clinical isolates to the species level using different phenotypic and molecular methods. Biofilm-forming ability and antifungal resistance were also studied. Methodology: Sixty-nine Candida strains were isolated from 220 immunocompromised patients. Identification was performed using chromogenic Candida agar, VITEK 2 system and multiplex polymerase chain reaction (PCR). Biofilm formation was detected by the tube method and antifungal susceptibility was tested using the VITEK2 system. Results: The most common source of Candida isolates was from urine (33.3%) and ICUs (56.6%). VITEK 2 system detected 9 spp.: C. albicans (34.8%), C. tropicalis (21.7%), C. famata (8.7%), C. lusitaniae (7.2%), C. cruzi (7.2%), C. ciferri (5.8%), C. dubliniensis (5.8%), C. parapsilosis (5.8 %) and C. glabrata. Candida isolates showed high resistance to flucytocine (49.3%), and high sensitivity to fluconazole, micafungin, voriconazole and caspofungin (88.4%, 81.2% and 81.2 % respectively). Only 30.4% of all Candida isolates were biofilm producers. There was a positive relationship between antifungal resistance and biofilm formation among Candida isolates. Conclusion: C. albicans was the predominant species. Chromogenic Candida agar and VITEK 2 system were valuable tests compared to PCR in speciation of Candida isolates. Antifungal susceptibility was significantly related to biofilm production and its evaluation is important for proper treatment..


2020 ◽  
Vol 116 ◽  
pp. 104772
Author(s):  
Laura Soares Souto Lepesqueur ◽  
Marcia Hiromi Tanaka ◽  
Gabriela de Morais Gouvêa Lima ◽  
Sonia Mayumi Chiba ◽  
Adolfo José Mota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document