scholarly journals A novel optimal multi-pattern matching method with wildcards for DNA sequence

2021 ◽  
Vol 29 ◽  
pp. 115-124
Author(s):  
Xinlu Wang ◽  
Ahmed A.F. Saif ◽  
Dayou Liu ◽  
Yungang Zhu ◽  
Jon Atli Benediktsson

BACKGROUND: DNA sequence alignment is one of the most fundamental and important operation to identify which gene family may contain this sequence, pattern matching for DNA sequence has been a fundamental issue in biomedical engineering, biotechnology and health informatics. OBJECTIVE: To solve this problem, this study proposes an optimal multi pattern matching with wildcards for DNA sequence. METHODS: This proposed method packs the patterns and a sliding window of texts, and the window slides along the given packed text, matching against stored packed patterns. RESULTS: Three data sets are used to test the performance of the proposed algorithm, and the algorithm was seen to be more efficient than the competitors because its operation is close to machine language. CONCLUSIONS: Theoretical analysis and experimental results both demonstrate that the proposed method outperforms the state-of-the-art methods and is especially effective for the DNA sequence.

1989 ◽  
Vol 28 (04) ◽  
pp. 270-272 ◽  
Author(s):  
O. Rienhoff

Abstract:The state of the art is summarized showing many efforts but only few results which can serve as demonstration examples for developing countries. Education in health informatics in developing countries is still mainly dealing with the type of health informatics known from the industrialized world. Educational tools or curricula geared to the matter of development are rarely to be found. Some WHO activities suggest that it is time for a collaboration network to derive tools and curricula within the next decade.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2021 ◽  
Vol 11 (6) ◽  
pp. 2511
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

This research presents Gradient Boosted Tree High Importance Path Snippets (gbt-HIPS), a novel, heuristic method for explaining gradient boosted tree (GBT) classification models by extracting a single classification rule (CR) from the ensemble of decision trees that make up the GBT model. This CR contains the most statistically important boundary values of the input space as antecedent terms. The CR represents a hyper-rectangle of the input space inside which the GBT model is, very reliably, classifying all instances with the same class label as the explanandum instance. In a benchmark test using nine data sets and five competing state-of-the-art methods, gbt-HIPS offered the best trade-off between coverage (0.16–0.75) and precision (0.85–0.98). Unlike competing methods, gbt-HIPS is also demonstrably guarded against under- and over-fitting. A further distinguishing feature of our method is that, unlike much prior work, our explanations also provide counterfactual detail in accordance with widely accepted recommendations for what makes a good explanation.


2021 ◽  
pp. 1-13
Author(s):  
Qingtian Zeng ◽  
Xishi Zhao ◽  
Xiaohui Hu ◽  
Hua Duan ◽  
Zhongying Zhao ◽  
...  

Word embeddings have been successfully applied in many natural language processing tasks due to its their effectiveness. However, the state-of-the-art algorithms for learning word representations from large amounts of text documents ignore emotional information, which is a significant research problem that must be addressed. To solve the above problem, we propose an emotional word embedding (EWE) model for sentiment analysis in this paper. This method first applies pre-trained word vectors to represent document features using two different linear weighting methods. Then, the resulting document vectors are input to a classification model and used to train a text sentiment classifier, which is based on a neural network. In this way, the emotional polarity of the text is propagated into the word vectors. The experimental results on three kinds of real-world data sets demonstrate that the proposed EWE model achieves superior performances on text sentiment prediction, text similarity calculation, and word emotional expression tasks compared to other state-of-the-art models.


Author(s):  
Xinmeng Li ◽  
Mamoun Alazab ◽  
Qian Li ◽  
Keping Yu ◽  
Quanjun Yin

AbstractKnowledge graph question answering is an important technology in intelligent human–robot interaction, which aims at automatically giving answer to human natural language question with the given knowledge graph. For the multi-relation question with higher variety and complexity, the tokens of the question have different priority for the triples selection in the reasoning steps. Most existing models take the question as a whole and ignore the priority information in it. To solve this problem, we propose question-aware memory network for multi-hop question answering, named QA2MN, to update the attention on question timely in the reasoning process. In addition, we incorporate graph context information into knowledge graph embedding model to increase the ability to represent entities and relations. We use it to initialize the QA2MN model and fine-tune it in the training process. We evaluate QA2MN on PathQuestion and WorldCup2014, two representative datasets for complex multi-hop question answering. The result demonstrates that QA2MN achieves state-of-the-art Hits@1 accuracy on the two datasets, which validates the effectiveness of our model.


2021 ◽  
Vol 25 (2) ◽  
pp. 283-303
Author(s):  
Na Liu ◽  
Fei Xie ◽  
Xindong Wu

Approximate multi-pattern matching is an important issue that is widely and frequently utilized, when the pattern contains variable-length wildcards. In this paper, two suffix array-based algorithms have been proposed to solve this problem. Suffix array is an efficient data structure for exact string matching in existing studies, as well as for approximate pattern matching and multi-pattern matching. An algorithm called MMSA-S is for the short exact characters in a pattern by dynamic programming, while another algorithm called MMSA-L deals with the long exact characters by the edit distance method. Experimental results of Pizza & Chili corpus demonstrate that these two newly proposed algorithms, in most cases, are more time-efficient than the state-of-the-art comparison algorithms.


2021 ◽  
Vol 7 (2) ◽  
pp. 21
Author(s):  
Roland Perko ◽  
Manfred Klopschitz ◽  
Alexander Almer ◽  
Peter M. Roth

Many scientific studies deal with person counting and density estimation from single images. Recently, convolutional neural networks (CNNs) have been applied for these tasks. Even though often better results are reported, it is often not clear where the improvements are resulting from, and if the proposed approaches would generalize. Thus, the main goal of this paper was to identify the critical aspects of these tasks and to show how these limit state-of-the-art approaches. Based on these findings, we show how to mitigate these limitations. To this end, we implemented a CNN-based baseline approach, which we extended to deal with identified problems. These include the discovery of bias in the reference data sets, ambiguity in ground truth generation, and mismatching of evaluation metrics w.r.t. the training loss function. The experimental results show that our modifications allow for significantly outperforming the baseline in terms of the accuracy of person counts and density estimation. In this way, we get a deeper understanding of CNN-based person density estimation beyond the network architecture. Furthermore, our insights would allow to advance the field of person density estimation in general by highlighting current limitations in the evaluation protocols.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Itziar Irigoien ◽  
Basilio Sierra ◽  
Concepción Arenas

In the problem of one-class classification (OCC) one of the classes, the target class, has to be distinguished from all other possible objects, considered as nontargets. In many biomedical problems this situation arises, for example, in diagnosis, image based tumor recognition or analysis of electrocardiogram data. In this paper an approach to OCC based on a typicality test is experimentally compared with reference state-of-the-art OCC techniques—Gaussian, mixture of Gaussians, naive Parzen, Parzen, and support vector data description—using biomedical data sets. We evaluate the ability of the procedures using twelve experimental data sets with not necessarily continuous data. As there are few benchmark data sets for one-class classification, all data sets considered in the evaluation have multiple classes. Each class in turn is considered as the target class and the units in the other classes are considered as new units to be classified. The results of the comparison show the good performance of the typicality approach, which is available for high dimensional data; it is worth mentioning that it can be used for any kind of data (continuous, discrete, or nominal), whereas state-of-the-art approaches application is not straightforward when nominal variables are present.


Sign in / Sign up

Export Citation Format

Share Document