Sudan Black B Reduces Autofluorescence in Murine Renal Tissue

2011 ◽  
Vol 135 (10) ◽  
pp. 1335-1342 ◽  
Author(s):  
Yan Sun ◽  
Hong Yu ◽  
Dong Zheng ◽  
Qi Cao ◽  
Ya Wang ◽  
...  

Context.—Renal tissue emits intense autofluorescence, making it difficult to differentiate specific immunofluorescence signals and thus limiting its application to clinical biopsy material. Objective.—To identify and minimize autofluorescence of renal tissue and demonstrate a simple, efficient method to reduce autofluorescence using Sudan black B. Design.—In this study, the sources and features of autofluorescence emitted from kidney tissue were examined. Broad autofluorescence was visualized in both frozen and paraffin kidney sections of normal mice and mice with Adriamycin-induced nephropathy using confocal laser scanning microscopy. Autofluorescence appeared in commonly used 4′,6-diamidino-2-phenylindole, fluorescein isothiocyanate, and Texas Red channels but not in far-red channel, and emitted extensively from red cells, injured tubulointersitial cells, and protein casts in diseased kidney. To eliminate autofluorescence, Sudan black B was used on formaldehyde-fixed paraffin sections and frozen sections of mouse kidney. The effects of Sudan black B in various concentrations were tested on kidney tissue. Results.—The 0.1% Sudan black B effectively blocked autofluorescence from both paraffin and frozen sections without adversely affecting specific fluorescence signals. Interestingly, the solvent for Sudan black B, 70% ethanol, was also shown to reduce autofluorescence on frozen sections, but not on paraffin sections. Conclusions.—This study demonstrates a simple, efficient, and cost-effective method to reduce autofluorescence using Sudan black B, and also provides a comprehensive approach to identify and minimize autofluorescence of renal tissue.

2001 ◽  
Vol 49 (12) ◽  
pp. 1565-1571 ◽  
Author(s):  
Werner Baschong ◽  
Rosmarie Suetterlin ◽  
R. Hubert Laeng

Confocal laser scanning microscopy (CLSM) offers the advantage of quasi-theoretical resolution due to absence of interference with out-of-focus light. Prerequisites include minimal tissue autofluorescence, either intrinsic or induced by fixation and tissue processing, and minimal background fluorescence due to nonspecific binding of the fluorescent label. To eliminate or reduce autofluorescence, three different reagents, ammonia-ethanol, sodium borohydride, and Sudan Black B were tested on paraffin sections of archival formaldehyde-fixed tissue. Paraffin sections of biopsy specimens of human bone marrow, myocardium, and of bovine cartilage were compared by CLSM at 488-nm, 568-nm and 647-nm wavelengths with bone marrow frozen sections fixed either with formaldehyde or with glutaraldehyde. Autofluorescence of untreated sections related to both the specific type of tissue and to the tissue processing technique, including fixation. The reagents' effects also depended on the type of tissue and technique of tissue processing, including fixation, and so did the efficiency of the reagents tested. Therefore, no general recipe for the control of autofluorescence could be delineated. Ammonia-ethanol proved most efficient in archival bone marrow sections. Sudan Black B performed best on myocardium, and the combination of all three reagents proved most efficient on paraffin sections of cartilage and on frozen sections fixed in formaldehyde or glutaraldehyde. Sodium borohydride was required for the reduction of unwanted fluorescence in glutaraldehyde-fixed tissue. In formaldehyde-fixed tissue, however, sodium borohydride induced brilliant autofluorescence in erythrocytes that otherwise remained inconspicuous. Ammonia-ethanol is believed to reduce autofluorescence by improving the extraction of fluorescent molecules and by inactivating pH-sensitive fluorochromes. The efficiency of borohydride is related to its capacity of reducing aldehyde and keto-groups, thus changing the fluorescence of tissue constituents and especially of glutaraldehyde-derived condensates. Sudan Black B is suggested to mask fluorescent tissue components.


2019 ◽  
Vol 20 (24) ◽  
pp. 6238 ◽  
Author(s):  
Anna L. Gill ◽  
Monica Z. Wang ◽  
Beth Levine ◽  
Alan Premasiri ◽  
Fernando G. Vieira

A repeat expansion mutation in the C9orf72 gene is the most common known genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In this study, using multiple cell-based assay systems, we reveal both increased dipeptide repeat protein (DRP) toxicity in primary neurons and in differentiated neuronal cell lines. Using flow cytometry and confocal laser scanning microscopy of cells treated with fluorescein isothiocyanate (FITC)-labeled DRPs, we confirm that poly-glycine-arginine (GR) and poly-proline-arginine (PR) DRPs entered cells more readily than poly-glycine-proline (GP) and poly-proline-alanine (PA) DRPs. Our findings suggest that the toxicity of C9-DRPs may be influenced by properties associated with differentiated and aging motor neurons. Further, our findings provide sensitive cell-based assay systems to test phenotypic rescue ability of potential interventions.


2000 ◽  
Vol 68 (3) ◽  
pp. 1696-1699 ◽  
Author(s):  
Michael K. Zenni ◽  
Peter C. Giardina ◽  
Hillery A. Harvey ◽  
Jianqiang Shao ◽  
Margaret R. Ketterer ◽  
...  

ABSTRACT Gonococcal entry into primary human urethral epithelial cells (HUEC) can occur by macropinocytosis. Scanning and transmission electron microscopy revealed lamellipodia surrounding gonococci, and confocal laser scanning microscopy analysis showed organisms colocalized with M r 70,000 fluorescein isothiocyanate-labeled dextran within the cells. Phosphoinositide 3-kinase inhibitors and an actin polymerization inhibitor prevented macropinocytic entry of gonococci into HUEC.


1996 ◽  
Vol 44 (11) ◽  
pp. 1337-1343 ◽  
Author(s):  
M Matsuta ◽  
M Matsuta ◽  
S Hayashi ◽  
S Yasumi ◽  
K Sasaki ◽  
...  

We demonstrated that the three-dimensional (3-D) locational and morphological differences of chromosome 17 are dependent on each cell cycle phase in the clinical materials. Cell suspensions prepared from hypertrophied tonsil were hybridized with chromosome 17 whole painting probe or its centromeric probe and the probes were detected with fluorescein isothiocyanate. Then the cells were sorted from G(0+1), S-, and G(2+M)-phase fractions by flow cytometry and observed by confocal laser scanning microscopy to obtain the serial optical sections. The 3-D images were obtained by assembling these sections using a computerized image analysis device. The distribution of centromeric copies was analyzed statistically, and the data values were not a population of random distribution within a sphere. The copies were observed in the periphery of the nuclei in G(0+1)- and S-phase. The 3-D images revealed that chromosome 17 was oval in shape in the G(0+1)-phase nucleus, and was changing into a flame shape in the S-phase, with arms stretching out along the nuclear membrane, and looked bush shaped in G2-phase. The eccentric distribution of chromosome 17 in G(0+1)- and S-phase nuclei may reflect the optimal efficiency of incorporating and/or releasing essential materials and products.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yanfei Yang ◽  
Ali Honaramooz

Significant intrinsic fluorescence in tissues and in disassociated cells can interfere with fluorescence identification of target cells. The objectives of the present study were (1) to examine an intrinsic fluorescence we observed in both the piglet testis tissue and cells and (2) to test an effective method to block the autofluorescence. We observed that a number of granules within the testis interstitial cells were inherently fluorescent, detectable using epifluorescence microscopy, confocal laser scanning microscopy, and flow cytometry. The emission wavelength of the autofluorescent substance ranged from 425 to 700 nm, a range sufficiently broad that could potentially interfere with fluorescence techniques. When we treated the samples with Sudan Black B for different incubation times, the intrinsic fluorescence was completely masked after treatment for 10–15 min of the testis tissue sections or for 8 min of the testis cells, without compromising specific fluorescence labeling of gonocytes with lectin Dolichos biflorus agglutinin (DBA). We speculate that the lipofuscin or lipofuscin-like pigments within Leydig cell granules were mainly responsible for the observed intrinsic fluorescence in piglet testes. The method described in the present study can facilitate the identification and characterization of piglet gonocytes using fluorescence microscopy.


2000 ◽  
Vol 278 (3) ◽  
pp. L580-L590 ◽  
Author(s):  
Heide Wissel ◽  
Stefan Zastrow ◽  
Ekkehard Richter ◽  
Paul A. Stevens

Biochemical and morphological assays were developed to study surfactant protein A (SP-A) and lipid resecretion kinetics by isolated type II cells in vitro. After a 10-min uptake period with SP-A (3 μg/106 cells) in combination with liposomes (60 μg/106 cells), the cells were allowed to resecrete. After 5 min of resecretion, only 21.7 ± 4.6% of the internalized SP-A remained intracellularly compared with 54 ± 2.9% of the lipids. Extracellular SP-A present during the resecretion period partially inhibited resecretion (SP-A, 36% at 5 min; lipid, ∼16% at 5 min). Lipid resecretion was also dependent on the SP-A concentration present during the uptake period. Although, as shown by confocal laser scanning microscopy, after a 10-min uptake period at 37°C, most of the fluorescein isothiocyanate-labeled SP-A and rhodamine-phosphatidylethanolamine-labeled lipids colocalized within the cells, after an additional 10 min of resecretion, both the strength of the fluorescence signals and the extent of colocalization had markedly decreased. These data indicate that internalized lipid and SP-A can be resecreted rapidly by type II cells, likely via different pathways.


Author(s):  
Karolin Wey ◽  
Matthias Epple

AbstractUltrasmall metallic nanoparticles show an efficient autofluorescence after excitation in the UV region, combined with a low degree of fluorescent bleaching. Thus, they can be used as fluorescent labels for polymer nanoparticles which are frequently used for drug delivery. A versatile water-in-oil-in-water emulsion-evaporation method was developed to load poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles with autofluorescent ultrasmall gold and silver/gold nanoparticles (diameter 2 nm). The metallic nanoparticles were prepared by reduction of tetrachloroauric acid with sodium borohydride and colloidally stabilised with 11-mercaptoundecanoic acid. They were characterised by UV–Vis and fluorescence spectroscopy, showing a large Stokes shift of about 370 nm with excitation maxima at 250/270 nm and emission maxima at 620/640 nm for gold and silver/gold nanoparticles, respectively. The labelled PLGA nanoparticles (140 nm) were characterised by dynamic light scattering (DLS), scanning electron microscopy (SEM), and UV–Vis and fluorescence spectroscopy. Their uptake by HeLa cells was followed by confocal laser scanning microscopy. The metallic nanoparticles remained inside the PLGA particle after cellular uptake, demonstrating the efficient encapsulation and the applicability to label the polymer nanoparticle. In terms of fluorescence, the metallic nanoparticles were comparable to fluorescein isothiocyanate (FITC).


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2473
Author(s):  
Xiu Peng ◽  
Sili Han ◽  
Kun Wang ◽  
Longjiang Ding ◽  
Zhenqi Liu ◽  
...  

In this study, the amelogenin-derived peptide, TVH-19, which has been confirmed to promote mineralization, was evaluated to derive its potential to induce dentinal tubule occlusion. The binding capability of fluorescein isothiocyanate (FITC)-labeled TVH-19 to the demineralized dentin surface was analyzed by confocal laser scanning microscopy (CLSM). Additionally, the sealing function of the peptide was studied through the remineralization of demineralized dentin in vitro. The adsorption results showed that TVH-19 could bind to the hydroxyapatite and demineralized dentin surfaces, especially to periodontal dentin. Scanning electron microscopy analysis further revealed that TVH-19 created mineral precipitates. The plugging rate in the TVH-19 group was higher than that in the PBS group. Moreover, energy-dispersive X-ray spectroscopy (EDX) results indicated that the calcium/phosphorus (Ca/P) ratio of the new minerals induced by TVH-19 was close to that of the hydroxyapatite. Attenuated total internal reflection-Fourier transform infrared (ATR-FTIR) spectrometry and X-ray diffraction (XRD) results indicated that the hydroxyapatite crystals formed via remineralization elongated the axial growth and closely resembled the natural dentin components. These findings indicate that TVH-19 can effectively promote dentin sealing by binding to the periodontal dentin, promoting mineral deposition, and reducing the space between the dentin tubules.


2008 ◽  
Vol 295 (4) ◽  
pp. R1290-R1300 ◽  
Author(s):  
M. Casartelli ◽  
G. Cermenati ◽  
S. Rodighiero ◽  
F. Pennacchio ◽  
B. Giordana

The mechanism responsible for fluorescein isothiocyanate (FITC)-albumin internalization by columnar cells in culture obtained from the midgut of Bombyx mori larvae was examined by confocal laser scanning microscopy. Protein uptake changed over time, and it appeared to be energy dependent, since it was strongly reduced by both low temperatures and metabolic inhibitors. Labeled albumin uptake as a function of increasing protein concentration showed a saturation kinetics with a Michaelis constant value of 2.0 ± 0.6 μM. These data are compatible with the occurrence of receptor-mediated endocytosis. RT-PCR analysis and colocalization experiments with an anti-megalin primary antibody indicated that the receptor involved was a putative homolog of megalin, the multiligand endocytic receptor belonging to the low-density lipoprotein receptor family, responsible for the uptake of various molecules, albumin included, in many epithelial cells of mammals. This insect receptor, like the mammalian counterpart, required Ca2+ for albumin internalization and was inhibited by gentamicin. FITC-albumin internalization was clathrin mediated, since two inhibitors of this process caused a significant reduction of the uptake, and clathrin and albumin colocalized in the intermicrovillar areas of the apical plasma membrane. The integrity of actin and microtubule organization was essential for the correct functioning of the endocytic machinery.


Sign in / Sign up

Export Citation Format

Share Document