scholarly journals Autoimmune Lymphoproliferative Syndrome: An Overview

2019 ◽  
Vol 144 (2) ◽  
pp. 245-251
Author(s):  
Daniel R. Matson ◽  
David T. Yang

Autoimmune lymphoproliferative syndrome (ALPS) is an inherited nonmalignant lymphoproliferative disorder characterized by heterozygous mutations within the first apoptosis signal receptor (FAS) signaling pathway. Defects in FAS-mediated apoptosis cause an expansion and accumulation of autoreactive CD4− and CD8− (double-negative) T cells, leading to cytopenias, splenomegaly, lymphadenopathy, autoimmune disorders, and a greatly increased lifetime risk of lymphoma. The differential diagnosis of ALPS includes infection, other inherited immunodeficiency disorders, primary and secondary autoimmune syndromes, and lymphoma. The most consistent pathologic feature is a florid paracortical expansion of double-negative T cells in lymph nodes. A presumptive clinical diagnosis can be made from symptoms and a constellation of laboratory test results. However, a definitive diagnosis requires ancillary testing and enables disease subclassification. Recognition of ALPS is critical, as treatment with immunosuppressive therapies can effectively reduce or ameliorate symptoms for most patients.

2016 ◽  
Vol 4 (3) ◽  
pp. 123-126
Author(s):  
Yazan S. Mousa

Background: Autoimmune lymphoproliferative syndrome (ALPS) is a rare disorder of the blood, estimated at around 500 cases worldwide. It is characterized by a dysregulation of T-cells in the immune system, and is caused by a defect in the process that mediates leukocyte apoptosis. This may result in an increased risk of lymphoma and autoimmune diseases. Case: The author reports a case of an 11-year-old male who had been followed up since three years of age for recurrent cytopenias, occurring with intermittent breakouts of purpuric rash, nosebleeds, and prolonged infections. Conclusion: A probable diagnosis was made through criteria based on the First International ALPS workshop of 2009. This includes the presence of circulating double-negative T cells, considered the laboratory marker unique for ALPS. The mainstay of treatment was prednisone, given at doses varying in proportion to the severity of immunocytopenia. osis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2218-2218
Author(s):  
Schafiq Nabhani ◽  
Hagit Miskin ◽  
Cyrill Schipp ◽  
Dan Harlev ◽  
Shoshana Revel-Vilk ◽  
...  

Abstract (PS and UF contributed equally to this work.) Introduction: The Autoimmune Lymphoproliferative Syndrome (ALPS) is caused by inefficient clearing of T lymphocytes. Patients are thus characterized by lymphadenopathy, hepatosplenomegaly, autoimmune cytopenias and an elevated number of double negative T cells (CD3+, TCRα/β+, CD4-, CD8-). Patients suffering from ALPS typically harbor germline or somatic mutations in genes involved in the apoptotic FAS death receptor signaling pathway (FAS, FASLG or CASP10). For 20-30% of patients, however, the genetic cause is still unknown. Methods: The objective of this study was to identify novel gene candidates underlying ALPS of unknown genetic cause. To this end, 25 patients with clinical ALPS symptoms, but without classical mutations were analyzed by whole-exome sequencing. The list of potential candidates was narrowed down using an in-house developed bioinformatic analysis pipeline for patient-based gene prioritization based on protein-protein interaction networks. Resulting candidates were validated by Sanger sequencing and their impact on Fas signaling was studied. Results We identified a de novo germline mutation of the Signal Transducer And Activator Of Transcription 3 (STAT3, c.833G>A, p.R278H) in one of the analyzed patients. The patient presented at the age of nine with Coombs positive hemolytic anemia, thrombocytopenia, generalized progressive, non-infectious, non-malignant lymphadenopathy and splenomegaly. Immunophenotyping revealed increased numbers of double negative T cells (20% in peripheral blood) and over time the patient developed panhypogammaglobulinemia. We performed immunoblot analyses and could demonstrate that the level of phosphorylated STAT3 (pSTAT3-Tyr705) was elevated in the patient's lymphocytes. This finding indicated that the mutation leads to constitutive activation of STAT3. Consistently, we detected an increased expression of STAT3 target genes (including SOCS3, MMP7 and the anti-apoptotic factors BCL2 and BCL2L1) compared to wild-type controls using quantitative real-time PCR. We could also show a decreased expression of the pro-apoptotic genes BAK1 and BAX that is in accordance with the known negative regulation by STAT3. Thus, in the analyzed patient we found that the balance of pro- and anti-apoptotic factors inside the cell was skewed towards apoptosis resistance. Consistently, we could induce apoptosis in vitro applying recombinant Fas ligand, IL21 or staurosporine efficiently in cells derived from healthy controls, but only to a significantly lesser extent in cells from the patient. Moreover, in healthy cells we observed a concurrent downregulation of anti-apoptotic BCL2/BCL2L1 and an upregulation of pro-apoptotic BAX/BAK1 expression upon treatment that was completely absent in the patient's cells. Next, we tried to rescue the effect of constitutively activated STAT3 by application of a STAT3 specific inhibitor: S3I-201. When we treated the patient's lymphocytes with S3I-201 the expression levels of pro- and anti-apoptotic genes were similar to healthy controls and the sensitivity to apoptosis was restored. Conclusion: We report here a novel germline dominant STAT3 gain-of-function mutation that caused a clinical phenotype mimicking ALPS. Recent studies indicated that dominant germline STAT3 gain-of-function mutations lead to autoimmunity, hypogammaglobulinemia, and lymphoproliferation. STAT3 gain-of-function patients therefore share some clinical characteristics with ALPS patients. The clinical presentation of the patient described here differed from the phenotypes previously reported and thus extends the spectrum of STAT3 -associated diseases. The mechanism underlying the clinical symptoms of STAT3 gain-of-function patients has not yet been determined. Here, we demonstrate increased activation of STAT3 and STAT3 target genes, leading to a skewed balance of pro- and anti-apoptotic factors and apoptosis evasion as a cause for lymphocyte accumulation and resulting autoimmunity in a STAT3 gain-of-function patient. Similar to ALPS patients, diminished responsiveness of lymphocytes to apoptosis seems to be a major characteristic. The clinical phenotype may differ because mutations in STAT3 or Fas signaling genes, respectively, affect overlapping, but also distinct signaling pathways. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (13) ◽  
pp. 3027-3030 ◽  
Author(s):  
Aude Magerus-Chatinet ◽  
Marie-Claude Stolzenberg ◽  
Maria S. Loffredo ◽  
Bénédicte Neven ◽  
Catherine Schaffner ◽  
...  

Abstract Autoimmune lymphoproliferative syndrome (ALPS) is characterized by splenomegaly, lymphadenopathy, hypergammaglobulinemia, accumulation of double-negative TCRαβ+ CD4−CD8− T cells (DNT cells), and autoimmunity. Previously, DNT cell detection and a functional defect of T cells in a FAS-induced apoptosis test in vitro had been used for ALPS diagnosis. However, a functional defect can also be detected in mutation-positive relatives (MPRs) who remain free of any ALPS-related disease. In contrast, lymphocytes from patients carrying a somatic mutation of FAS exhibit normal sensitivity to FAS-induced apoptosis in vitro. We assessed the soluble FAS-L concentration in the plasma of ALPS patients carrying FAS mutations. Overall, we showed that determination of the FAS-L represents, together with the IL-10 concentration and the DNT cell percentage, a reliable tool for the diagnosis of ALPS.


2011 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
T. Mikołajczyk ◽  
R. Nosalski ◽  
A. Sagan ◽  
D. Skiba ◽  
D. Ludew ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document