scholarly journals Variants in Epithelial-Mesenchymal Transition and Immune Checkpoint Genes Are Associated With Immune Cell Profiles and Predict Survival in Non–Small Cell Lung Cancer

2020 ◽  
Vol 144 (10) ◽  
pp. 1234-1244
Author(s):  
Edwin Roger Parra ◽  
Mei Jiang ◽  
Juliana Machado-Rugolo ◽  
Lygia Bertalha Yaegashi ◽  
Tabatha Prieto ◽  
...  

Context.— Identification of gene mutations that are indicative of epithelial-mesenchymal transition and a noninflammatory immune phenotype may be important for predicting response to immune checkpoint inhibitors. Objective.— To evaluate the utility of multiplex immunofluorescence for immune profiling and to determine the relationships among tumor immune checkpoint and epithelial-mesenchymal transition genomic profiles and the clinical outcomes of patients with nonmetastatic non–small cell lung cancer. Design.— Tissue microarrays containing 164 primary tumor specimens from patients with stages I to IIIA non–small cell lung carcinoma were examined by multiplex immunofluorescence and image analysis to determine the expression of programmed death ligand-1 (PD-L1) on malignant cells, CD68+ macrophages, and cells expressing the immune markers CD3, CD8, CD57, CD45RO, FOXP3, PD-1, and CD20. Immune phenotype data were tested for correlations with clinicopathologic characteristics, somatic and germline genetic variants, and outcome. Results.— A high percentage of PD-L1+ malignant cells was associated with clinicopathologic characteristics, and high density of CD3+PD-1+ T cells was associated with metastasis, suggesting that these phenotypes may be clinically useful to identify patients who will likely benefit from immunotherapy. We also found that ZEB2 mutations were a proxy for immunologic ignorance and immune tolerance microenvironments and may predict response to checkpoint inhibitors. A multivariate Cox regression model predicted a lower risk of death for patients with a high density of CD3+CD45RO+ memory T cells, carriers of allele G of CTLA4 variant rs231775, and those whose tumors do not have ZEB2 mutations. Conclusions.— Genetic variants in epithelial-mesenchymal transition and immune checkpoint genes are associated with immune cell profiles and may predict patient outcomes and response to immune checkpoint blockade.

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2924
Author(s):  
Alexander Chi ◽  
Xia He ◽  
Lin Hou ◽  
Nam P. Nguyen ◽  
Guangying Zhu ◽  
...  

Immune checkpoint blockade (ICB) with checkpoint inhibitors has led to significant and durable response in a subset of patients with advanced stage EGFR and ALK wild-type non-small cell lung cancer (NSCLC). This has been consistently shown to be correlated with the unique characteristics of each patient’s tumor immune micro-environment (TIME), including the composition and distribution of the tumor immune cell infiltrate; the expression of various checkpoints by tumor and immune cells, such as PD-L1; and the presence of various cytokines and chemokines. In this review, the classification of various types of TIME that are present in NSCLC and their correlation with response to ICB in NSCLC are discussed. This is conducted with a focus on the characteristics and identifiable biomarkers of different TIME subtypes that may also be used to predict NSCLC’s clinical response to ICB. Finally, treatment strategies to augment response to ICB in NSCLC with unresponsive types of TIME are explored.


2021 ◽  
Vol 16 (3) ◽  
pp. S300-S301
Author(s):  
M. Peravali ◽  
C. Gomes-Lima ◽  
E. Tefera ◽  
M. Baker ◽  
M. Sherchan ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kejun Liu ◽  
Xianwen Chen ◽  
Ligang Wu ◽  
Shiyuan Chen ◽  
Nianxin Fang ◽  
...  

Abstract Background ID1 is associated with resistance to the first generation of EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, the effect of ID1 expression on osimertinib resistance in EGFR T790M-positive NSCLC is not clear. Methods We established a drug-resistant cell line, H1975/OR, from the osimertinib-sensitive cell line H1975. Alterations in ID1 protein expression and Epithelial–mesenchymal transition (EMT)-related proteins were detected with western blot analysis. RT-PCR was used to evaluate the differences of gene mRNA levels. ID1 silencing and overexpression were used to investigate the effects of related gene on osimertinib resistance. Cell Counting Kit-8 (CCK8) was used to assess the proliferation rate in cells with altered of ID1 expression. Transwell assay was used to evaluate the invasion ability of different cells. The effects on the cell cycle and apoptosis were also compared using flow cytometry. Results In our study, we found that in osimertinib-resistant NSCLC cells, the expression level of the EMT-related protein E-cadherin was lower than that of sensitive cells, while the expression level of ID1 and vimentin were higher than those of sensitive cells. ID1 expression levels was closely related to E-cadherin and vimentin in both osimertinib-sensitive and resistant cells. Alteration of ID1 expression in H1975/OR cells could change the expression of E-cadherin. Downregulating ID1 expression in H1975/OR cells could inhibit cell proliferation, reduce cell invasion, promote cell apoptosis and arrested the cell cycle in the G1/G0 stage phase. Our study suggests that ID1 may induce EMT in EGFR T790M-positive NSCLC, which mediates drug resistance of osimertinib. Conclusions Our study revealed the mechanism of ID1 mediated resistance to osimertinib in EGFR T790M-positive NSCLC through EMT, which may provide new ideas and methods for the treatment of EGFR mutated NSCLC after osimertinib resistance.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 97
Author(s):  
Adrien Costantini ◽  
Paul Takam Kamga ◽  
Catherine Julie ◽  
Alexandre Corjon ◽  
Coraline Dumenil ◽  
...  

Immune checkpoint inhibitors (ICIs) are commonly used in patients with advanced non-small cell lung cancer (NSCLC). An unmet need remains for new biomarkers associated with ICIs. In this study, consecutive patients with advanced NSCLC treated with nivolumab or pembrolizumab were included. Plasma at ICIs initiation was prospectively collected and a multiplex ELISA assay testing 48 cytokines and growth factors was performed. Exploratory endpoints were the association between plasma biomarkers with outcome and grade III–IV immune related adverse events (irAEs). Thirty-five patients were included. Patients without clinical benefit (n = 22) had higher pre-ICI soluble Hepatocyte Growth Factor (sHGF) (210.9 vs. 155.8 pg/mL, p = 0.010), lower pre-ICI soluble Fibroblast Growth Factor (sFGF) (4.0 vs. 4.8 pg/mL, p = 0.043) and lower pre-ICI interleukine-12 (IL-12) (1.3 vs. 2.2 pg/mL, p = 0.043) concentrations. Patients with early progression (n = 23) had higher pre-ICIs sHGF (206.2 vs. 155.8 pg/mL, p = 0.025) concentrations. Patients with low sHGF levels at ICIs initiation had longer progression-free survival and overall survival than those with high sHGF levels: respectively 2.5 vs. 8.0 months (p = 0.002), and 5.5 vs. 35.0 months (p = 0.001). TNF-α, IL-16, IL-12p40 and MCP3 were associated with high grade irAEs. This study shows the potential association between several plasma biomarkers with outcome and grade 3–4 IrAEs in advanced NSCLC treated with ICIs.


Sign in / Sign up

Export Citation Format

Share Document