The Arctic grail: the quest for the North West Passage and the North Pole, 1818-1909

1989 ◽  
Vol 26 (07) ◽  
pp. 26-4042-26-4042
Keyword(s):  
1992 ◽  
Vol 25 (3) ◽  
pp. 374
Author(s):  
Jeff Hickey ◽  
Pierre Berton
Keyword(s):  

2011 ◽  
Vol 193 (2) ◽  
pp. 474-480 ◽  
Author(s):  
Matthias H. Hoffmann

2021 ◽  
Vol 12 (4-2021) ◽  
pp. 28-36
Author(s):  
O. V. Shabalina ◽  
◽  
K. S. Kazakova ◽  

The article presents materials from the personal fund of the largest hydropower engineer of the North-West of the USSR S. V. Grigoriev, belonging to the Museum-Archive of History of Studying and Exploration of the European North of the Barents Centre of Humanities of the KSC RAS. The personal documents of the scientist and the practitioner are sources of biographical information given in the article and potential sources for research in the field of the history of the scientific study of water bodies, rivers and the development of hydropower in the Arctic.


1975 ◽  
Vol 15 (73) ◽  
pp. 193-213
Author(s):  
Moira Dunbar

AbstractSLAR imagery of Nares Strait was obtained on three flights carried out in. January, March, and August of 1973 by Canadian Forces Maritime Proving and Evaluation Unit in an Argus aircraft equipped with a Motorola APS-94D SLAR; the March flight also covered two lines in the Arctic Ocean, from Alert 10 the North Pole and from the Pole down the long. 4ºE. meridian to the ice edge at about lat. 80º N. No observations on the ground were possible, but -some back-up was available on all flights from visual observations recorded in the air, and on the March flight from infrared line-scan and vertical photography.The interpretation of ice features from the SLAR imagery is discussed, and the conclusion reached that in spite of certain ambiguities the technique has great potential which will increase with improving resolution, Extent of coverage per distance flown and independence of light and cloud conditions make it unique among airborne sensors.


1989 ◽  
Vol 12 ◽  
pp. 152-156 ◽  
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


2020 ◽  
Author(s):  
Egidio Marino ◽  
Javier González ◽  
Teresa Medialdea ◽  
Luis Somoza ◽  
Rosario Lunar ◽  
...  

<p>The world increasing demand of electric vehicles (EVs) that use lithium-ion batteries (LIB), in which cobalt is one of the essential elements, focused the attention on its demand that is calculated will increase of 7-13% annually until 2030. The actual production of cobalt, usually extract as by-product of nickel and copper mine, is reduced to almost 20 countries between which the Democratic Republic of the Congo is the bigger producer with 55% of the world production. In Europe cobalt is produced only in Finland that actually provides 2.300 tonnes, the 2% of the world production. In this way several projects have been promoted by European Union, with the Raw Material Initiative, in order to find and evaluate the sustainable production of important materials in Europe.</p><p>MINDeSEA[1] project is part of the GeoERA and represent the collaboration of 12 national geological institution partners, to characterize marine deposits and their contents in Critical Raw Materials (CRM) and to generate a comprehensive cartography and metallogenic models of them. The first preliminary map produced in 2019 represents the localization and evaluation of cobalt rich deposits in the oceans within the EEZ and ECS of the European countries.  Cobalt deposits are represented essentially by hydrogenetic Fe-Mn crusts located essentially in the Macaronesian area of the north east Atlantic Ocean (in the Portugal and Spain), submarine plateaus, as the Galicia Bank (in the north west Spanish) and in the Arctic Ocean ridges (Norway and Iceland). The report differentiates between occurrences (<0.05 wt. %) and deposits (>0.05 wt. %), with the possibility of more than 200 Mt resources per potential deposit.</p><p>Detailed mineralogical, geochemical and metallogenic studies are being developed in crusts from the Macaronesia. Fe-Mn crusts absorb dissolved elements in seawaters on the surface of the fresh precipitated oxy-hydroxides during their slow growth through millions of years. Several elements are concentrated in Fe-Mn crusts and between them cobalt is one of the most enriched trace metals (average 0.6 wt. %) accompanied by other strategic and critical metals such as nickel, copper, tellurium, molybdenum and rare earth elements plus yttrium (REY) (respectively 3000, 500, 150, 500 and 3500 µg/g). Micro Raman and micro X-Ray diffraction can be used to differentiate the mineralogy in laminae of less than 20 microns. On the other hand, electron probe micro-analyzer (EPMA) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), are useful in order to quantify contents of CRM in the different mineral phases. These are innovative techniques in order to identify critical-elements bearing minerals and thus choose the metallurgic method for a more efficient and sustainable extraction of the interesting elements.</p><p>The evaluation of a seamount as a future mine site has to take into account all these mineralogical and chemical features as well as a proper knowledge of the seamount (morpho-structure, geology, oceanography, ecosystems) and the Fe-Mn crust thickness and extension</p><div><br><div> <p>[1] This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731166</p> </div> </div>


2010 ◽  
Vol 62 (10) ◽  
pp. 829-832 ◽  
Author(s):  
Jürgen Matzka ◽  
Thorkild M. Rasmussen ◽  
Arne V. Olesen ◽  
Jens Emil Nielsen ◽  
Rene Forsberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document