scholarly journals Stability Determination of an Extemporaneously Compounded Ambrisentan Suspension by High Performance Liquid Chromatography Analysis

2021 ◽  
Vol 26 (3) ◽  
pp. 265-270
Author(s):  
Jesse Cramer ◽  
Mackenzie Bevry ◽  
Stephanie Handler ◽  
Kathryn Tillman ◽  
Ehab A. Abourashed

OBJECTIVE Ambrisentan, an endothelin receptor antagonist FDA-approved for the treatment of pulmonary arterial hypertension in adult patients, lacks an acceptable pediatric dosage form. The objective of this investigation was to determine the stability of an extemporaneously compounded ambrisentan suspension. METHODS Ambrisentan suspension was compounded to a concentration of 1 mg/mL using commercially available suspending agents. The suspension was then evenly split into 2 plastic amber prescription bottles. One bottle was stored at room temperature and under continuous fluorescent light while the other bottle was stored under refrigeration and protection from light. A fast and selective reversed-phase high-performance liquid chromatography (HPLC) method was developed and validated for the analysis of ambrisentan. HPLC analysis was performed on samples withdrawn from the stock bottles at predetermined time intervals, up to 90 days. RESULTS The developed HPLC method enabled the elution and detection of ambrisentan peak at 4.4 minutes. HPLC analysis revealed that all samples from both storage conditions retained >90% potency throughout the study timeframe. There were no signs of any ambrisentan breakdown products on HPLC analysis. Color and odor of the final product was also consistent throughout the 90-day storage period. CONCLUSION Ambrisentan suspension, compounded to 1 mg/mL, is stable at room temperature or under refrigeration for up to 90 days.

2017 ◽  
Vol 25 (2) ◽  
pp. 339-350
Author(s):  
Sun Hee Kim ◽  
Irene Krämer

Centralized aseptic preparation of ready-to-administer carfilzomib containing parenteral solutions in plastic syringes and polyolefine (PO) infusion bags needs profound knowledge about the physicochemical stability in order to determine the beyond-use-date of the preparations. Therefore, the purpose of this study was to determine the physicochemical stability of carfilzomib solution marketed as Kyprolis® powder for solution for infusion. Reconstituted solutions and ready-to-administer preparations of Kyprolis® stored under refrigeration (2–8℃) or at room temperature (25℃) were analyzed at predetermined intervals over a maximum storage period of 28 days. Chemical stability of carfilzomib was planned to be determined with a stability-indicating reversed-phase high-performance liquid chromatography assay. Physicochemical stability was planned to be determined by visual inspection of clarity and color as well as pH measurement. The study results show that reconstituted carfilzomib containing parenteral solutions are stable in glass vials as well as diluted solutions in plastic syringes and PO infusion bags over a period of at least 28 days when stored light protected under refrigeration. When stored at room temperature, reconstituted and diluted carfilzomib solutions are physicochemically stable over 14 days and 10 days, respectively. The physicochemical stability of carfilzomib infusion solutions allows cost-saving pharmacy-based centralized preparation of ready-to-administer preparations.


2014 ◽  
Vol 19 (1) ◽  
pp. 25-29
Author(s):  
Clay R. Tynes ◽  
Brad Livingston ◽  
Hetesh Patel ◽  
John J. Arnold

OBJECTIVES The purpose of this study was to evaluate the chiral stability of clopidogrel bisulfate in an extemporaneously compounded oral suspension for a period of 60 days. METHODS A 5 mg/mL oral suspension of clopidogrel bisulfate was prepared from commercially available Plavix tablets. The clopidogrel suspension was then evenly divided between two light-resistant prescription bottles and stored either under refrigeration (4°C) or at room temperature (25°C). Samples were drawn from the stored suspensions immediately after preparation and on days 7, 14, 28, and 60. Samples were subsequently analyzed at each time point by high-performance liquid chromatography using a reversed-phase column, with chemical stability defined as the retention of at least 90% of the initial intact clopidogrel concentration measured. To determine the chiral stability of the suspension, samples were also analyzed by high-performance liquid chromatography using a chiral column to investigate possible enantiomeric inversion. Chiral stability was defined as the retention of at least 90% of the initial concentration of the suspension as the S-enantiomer, the active moiety of Plavix. RESULTS Regardless of storage conditions, the oral suspension of clopidogrel retained at least 98% of the active S-enantiomer for 60 days after preparation. Compared with the clopidogrel suspension stored in the refrigerator, more chiral inversion was noted in the clopidogrel suspension stored at room temperature. CONCLUSIONS Our investigation of chiral stability indicates that a 5 mg/mL clopidogrel oral suspension stored under refrigeration and at room temperature maintains chiral stability as the active S-enantiomer.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


1986 ◽  
Vol 49 (5) ◽  
pp. 383-388 ◽  
Author(s):  
PETER SPORNS ◽  
SUET KWAN ◽  
LAWRENCE A. ROTH

Oxytetracycline (OTC), also known commercially as Terramycin, was determined to be more stable in honey than in buffered aqueous solutions at similar pH values and temperatures. A rapid high performance liquid chromatography (HPLC) method was developed to detect and quantitate OTC using a 1:1 dilution (wt/wt) of honey samples in water. Using 355 nm as the wavelength of detection, amounts as low as 0.5 μg/ml could be detected in the above solution. The limits of detection were lowered considerably by a double extraction procedure.


Author(s):  
PULAGURTHA BHASKARARAO ◽  
GOWRI SANKAR DANNANA

Objective: Noscof tablet is a fixed dosage combination formulation having diphenhydramine (DH), ephedrine (ED), noscapine (NP), and glycerol glycolate (GG). A sensitive, selective, accurate, precise, and stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method with photodiode array detection has been developed and validated for simultaneous analysis of DH, ED, NP, and GG in bulk drug and Noscof tablets. Methods: Reversed-phase chromatographic separation and analysis of DH, ED, NP, and GG were done on an Altima C18 column with 0.01 M KH2PO4 buffer (pH 3.5) and acetonitrile (50:50%, v/v) as mobile phase at 0.8 ml/min flow rate in isocratic mode. Detection was performed at 260 nm. The method was validated in harmony with International Conference on Harmonization (ICH) guidelines. The tablet sample solution was subjected to diverse stress conditions using ICH strategy such as hydrolytic degradation (neutral - with distilled water, alkaline - with 2 N NaOH, and acidic - with 2 N HCl), oxidation (with 10% H2O2), photodegradation (exposing to UV light), and dry heat degradation (exposing to 105°C). Results: Using the above stated chromatographic conditions, sharp peaks were obtained for ED, NP, DH, and GG with retention time of 3.272 min, 4.098 min, 5.467 min, and 6.783 min, respectively. Good regression coefficient values were obtained in the range of 2–12 μg/ml for ED, 3.75–22.5 μg/ml for NP, 3.125–18.75 μg/ml for DH, and 25–150 μg/ml for GG. The quantification limits were 0.181 μg/ml, 0.187 μg/ml, 0.246 μg/ml, and 1.114 μg/ml for ED, NP, DH, and GG, respectively. The values of validation parameters are within the acceptance limits given by ICH. The ED, NP, DH, and GG showed more percent of degradation in acid condition and less percent of degradation in the neutral condition. The peaks of degradants did not interfere with the peaks of analytes. ED, NP, DH, and GG were assessed with a good percentage of the assay (near to 100%) and low percent relative standard deviation (<2%) in Noscof tablets using the proposed method. Conclusion: The stability indicating RP-HPLC method developed was suitable for quantifying ED, NP, DH, and GG simultaneously in bulk as well as in tablet formulation.


2006 ◽  
Vol 89 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Hadi Valizadeh ◽  
Parvin Zakeri-Milani ◽  
Ziba Islambulchilar ◽  
Hosniyeh Tajerzadeh

Abstract A simple reversed-phase high-performance liquid chromatography (HPLC) method with ultraviolet detection at 280 nm was developed for simultaneous quantitation of furosemide and hydrochlorothiazide along with phenol red as a nonabsorbable marker for in situ permeability studies in anaesthetized rats. A jejunal segment of approximately 10 cm was isolated and cannulated in both ends for inlet and outlet solution. The perfusate was collected every 10 min, and samples were analyzed using the developed method. The mobile phase was acetonitrile-watser-triethylamine-glacial acetic acid (41.5 + 57.4 + 0.1 + 0.9, adjusted to pH 5.6) at a flow rate of 1 mL/min; the run time was 9 min. The calibration graphs were linear for all 3 compounds (r &gt; 0.999) across the concentration range of 7.93-125 μg/mL for phenol red and 6.25-100 μg/mL for hydrochlorothiazide and furosemide. The limits f quantitation were 7.2, 8.9, and 6.8 μg/mL for furosemide, hydrochlorothiazide, and phenol red, respectively. The coefficients of variation for intraassay and interassay precision were less than or equal to 7.6%, and the accuracy was between 93.2103.4%. Using the single pass intestinal perfusion technique and the suggested HPLC method for sample analysis, mean values of 0.25 10-4(±0.16) cm/s and 0.22 10-4 (±0.13) cm/s were obtained for furosemide and hydrochlorothiazide, respectively.


2002 ◽  
Vol 65 (4) ◽  
pp. 688-691 ◽  
Author(s):  
P. S. GONG ◽  
S. L. JENG ◽  
Y. F. HSU ◽  
C. C. LIN ◽  
S. Y. LIN

An ion-pairing reversed-phase high-performance liquid chromatography (HPLC) method with diode array detection at 280 nm was developed to determine pyrimethamine concentrations in feed for laying hens. Pyrimethamine was extracted with a mixture of 5% isobutanol and 95% benzene, and the extract was cleaned up on an alumina column. The drug was eluted from an Intersil ODS-3V column (250 by 4.6 mm) with a mixture of 25% acetonitrile and 75% water (vol/vol) containing 0.01 M tetramethylammonium chloride as an ion-pairing agent and adjusted with acetic acid to pH 3.5. The flow rate was 1.0 ml/min. Mean recovery of pyrimethamine from supplemented feeds at concentrations of 2, 4, and 5 μg/g of feed were 100.5, 103.5, and 100.8%, respectively. Precision within a day ranged from 4.3 to 7.0% for the three concentrations, and day-to-day precision was 5.3% for feed supplemented at a concentration of 4 μg/g. No chromatographic interference was detected from other 2,4-diaminopyrimidine compounds or other major drugs used in poultry.


Author(s):  
Bijithra Cholaraja ◽  
Shanmugasundaram P ◽  
Ragan G ◽  
Sankar Ask ◽  
Sumithra M

ABSTRACTObjective: To development and validation of a reversed-phase high-performance liquid chromatography (RP-HPLC) for the determination of modafinilin bulk and pharmaceutical dosage forms.Methods: A simple, precise, rapid, and accurate RP-HPLC method was developed for the estimation of modafinil in bulk and pharmaceutical dosageforms. Xterra RP 18 (250 mm × 4.6 mm, 5 µ particle size) with a mobile phase consisting of methanol:water 70:30 V/V was used. The flow rate1.0 ml/min and the effluents were monitored at 260 nm. The retention time and recovery time was 12 minutes. The detector response was linear inthe concentration of 10-50 µg/ml. The respective linear regression equation being Y=452.1x+65237. The limit of detection and limit of quantificationwere 4.547 and 1.377 mcg, respectively. The method was validated by determining its accuracy, precision, and system suitability.Result: The objective of the present work is to develop simple, precise, and reliable HPLC method for the analysis of modafinil in bulk andpharmaceutical dosage forms. This is achieved using the most commonly employed Xterra RP 18 (250 mm × 4.6 mm, 5 μ particle size) columndetection at 260 nm. The present method was validated according to ICH guidelines.Conclusion: In this study, a simple, fast and reliable HPLC method was developed and validated for the determination of modafinil in pharmaceuticalformulations.Keywords: Modafinil, Reversed-phase high-performance liquid chromatography, Estimation, ICH guidelines, Tablets. 


Author(s):  
Manasi Kulkarni B ◽  
Anagha Joshi M

Objective: The objective is to study the development of a simple, rapid, specific, precise, and accurate reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of serratiopeptidase (SER) and diclofenac (DC) sodium in bulk and tablet formulation.Methods: RP-HPLC method was developed for the simultaneous estimation of SER and DC sodium in tablet formulation. The separation was achieved by Kromasil C18 column (250 mm × 4.6 mm, 5 μm particle size) with phosphate buffer pH-7 and o-phosphoric acid:methanol:acetonitrile (5:4:1% v/v/v). Flow rate was maintained at 1 mL/min and UV detection was carried at 270 nm.Result: For RP-HPLC method, the retention time for SER and DC sodium was found to be 3.3833 min and 8.1667 min, respectively. The method was validated for accuracy, precision, and specificity. Linearity for SER and DC sodium was in the range of 5–50 μg/ml.Conclusion: The developed RP-HPLC method is simple, accurate, rapid, sensitive, precise, and economic. Hence, this method can be employed successfully for the estimation of SER and DC sodium in both bulk and tablet dosage forms.


Sign in / Sign up

Export Citation Format

Share Document