Hemostatic efficacy of human-like collagen sponge in arterioles and liver injury model

2012 ◽  
Vol 6 (10) ◽  
Author(s):  
Zhiguang Duan
2021 ◽  
pp. 155335062110461
Author(s):  
Jianjun Zhu ◽  
Zhuona Wu ◽  
Wenzhong Sun ◽  
Zhiyun Meng ◽  
Xiaoxia Zhu ◽  
...  

Background A novel absorbable porous starch hemostat (APSH) based on calcium ion-exchange crosslinked porous starch microparticles (Ca2+CPSM) was developed to improve hemostasis during surgeries for irregular cuts. The aim of this study was to compare its hemostatic efficacy and biocompatibility in a standard rat liver injury model relatively to Arista AH, Quickclean, and crosslinked porous starch microparticles (CPSM, without calcium ion). Methods 72 Wistar rats (220g–240 g) were randomly assigned to six groups (Arista, Quickclean, CPSM, Ca2+CPSM, native potato starch, and untreated control group, n =12 per group). 30 mg of each hemostatic agent was applied to a standard circular liver excision (8 mm in diameter and 3 mm deep) in rats. Following their hemostatic efficacy, in vivo biocompatiblity evaluation was examined. The native potato starch (NPS) group was used as the negative group. Results Ca2+CPSM had almost the same hemostatic efficacy compared with Arista; meanwhile, all the 4 hemostatic agents had good blood compatibility. In terms of in vivo tissue compatibility, Ca2+CPSM had relatively fast degradation and absorption rate with good histocompatibility. As the morphological, anatomic observation and H&E staining of liver defects after implantation, Ca2+CPSM was almost completely absorbed by liver tissue after 14 days. Conclusion According to our study, Ca2+CPSM could effectively achieve hemostasis in the standard rat liver injury model and exhibited good blood compatibility and in vivo tissue compatibility. These finding suggested that Ca2+CPSM as a new kind of APSH had its extensive clinical application value.


2015 ◽  
Vol 53 (12) ◽  
Author(s):  
LS Spitzhorn ◽  
M Megges ◽  
C Kordes ◽  
I Sawitza ◽  
S Götze ◽  
...  

1997 ◽  
Vol 26 (2) ◽  
pp. 274-280 ◽  
Author(s):  
Mark R. Jackson ◽  
Stanley A. Friedman ◽  
Andrew J. Carter ◽  
Vladislav Bayer ◽  
J.Robert Burge ◽  
...  

2020 ◽  
Vol 158 (6) ◽  
pp. S-1321
Author(s):  
Helene Baribault ◽  
Caroline Broderick ◽  
Haili Zhang ◽  
Hui Chen ◽  
Jay Ye ◽  
...  
Keyword(s):  

2019 ◽  
Vol 7 (9) ◽  
pp. 358 ◽  
Author(s):  
Yanhan Liu ◽  
Cun Liu ◽  
Liqing Huang ◽  
Zhaofei Xia

Clostridium butyricum (C. butyricum) can attenuate oxidative stress, inflammation, and hepatic fatty deposition in poultry, however, the underlying mechanisms for this in Pekin ducks remain unclear. This study evaluated these hepatoprotective effects and the underlying mechanisms in a corticosterone (CORT)-induced liver injury model in Pekin ducks fed a C. butyricum intervention diet. A total of 500 Pekin ducks were randomly divided into five groups: one group (CON group) was only provided with a basal diet, three groups were provided a basal diet with 200 mg/kg (LCB group), 400 mg/kg (MCB group), or 600 mg/kg (HCB group) C. butyricum, respectively, and one group was provided a basal diet with 150 mg/kg aureomycin (ANT group) for 42 d. At 37 days-old, all ducks received daily intraperitoneal injections of CORT for five days to establish a liver injury model. C. butyricum intervention alleviated liver injury by decreasing the liver organ indices, hepatic steatosis and hepatocyte necrosis, and improving liver function, antioxidant capacity, and inflammatory factors. Hepatic RNA-seq revealed 365 differentially expressed genes (DEGs) between the MCB and CON groups, with 229 up- and 136 down-regulated DEGs in the MCB group. Between the MCB and ANT groups, 407 DEGs were identified, including 299 up- and 108 down-regulated genes in MCB group. Some DEGs in the MCB group related to oxidative stress and inflammatory responses such as Sod3, Tlr2a/b, and Il10, which were up-regulated, while Apoa1, Cyp7a1, Acsl1/5, Fasn, Ppar-γ, and Scd, which are involved in lipid metabolism, were down-regulated, indicating that these genes were responsive to dietary C. butyricum for the alleviation of corticosterone-induced hepatic injury. Toll-like receptor signaling, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, peroxisome proliferator-activated receptor (PPAR) signaling pathway, adipocytokine and glycerophospholipid metabolism signaling pathway were significantly enriched in the MCB group. These findings indicate that C. butyricum intervention can protect Pekin ducks from corticosterone-induced liver injury by the modulation of immunoregulatory- and lipid metabolism-related genes and pathways.


2018 ◽  
Vol 154 (6) ◽  
pp. S-1119
Author(s):  
Banrida Wahlang ◽  
Walter Rodriguez-Alvarez ◽  
Yali Wang ◽  
Jingwen Zhang ◽  
Shirish Barve ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document