scholarly journals Carbon Inventory Methods in Indian Forests - A Review

2012 ◽  
Vol 2 (6) ◽  
pp. 315-323
Author(s):  
Akhlaq A. Wani ◽  
P. K. Joshi ◽  
Ombir Singh ◽  
Rajiv Pandey
2018 ◽  
Vol 14 (11) ◽  
pp. 1819-1850 ◽  
Author(s):  
Olivier Cartapanis ◽  
Eric D. Galbraith ◽  
Daniele Bianchi ◽  
Samuel L. Jaccard

Abstract. Although it has long been assumed that the glacial–interglacial cycles of atmospheric CO2 occurred due to increased storage of CO2 in the ocean, with no change in the size of the “active” carbon inventory, there are signs that the geological CO2 supply rate to the active pool varied significantly. The resulting changes of the carbon inventory cannot be assessed without constraining the rate of carbon removal from the system, which largely occurs in marine sediments. The oceanic supply of alkalinity is also removed by the burial of calcium carbonate in marine sediments, which plays a major role in air–sea partitioning of the active carbon inventory. Here, we present the first global reconstruction of carbon and alkalinity burial in deep-sea sediments over the last glacial cycle. Although subject to large uncertainties, the reconstruction provides a first-order constraint on the effects of changes in deep-sea burial fluxes on global carbon and alkalinity inventories over the last glacial cycle. The results suggest that reduced burial of carbonate in the Atlantic Ocean was not entirely compensated by the increased burial in the Pacific basin during the last glacial period, which would have caused a gradual buildup of alkalinity in the ocean. We also consider the magnitude of possible changes in the larger but poorly constrained rates of burial on continental shelves, and show that these could have been significantly larger than the deep-sea burial changes. The burial-driven inventory variations are sufficiently large to have significantly altered the δ13C of the ocean–atmosphere carbon and changed the average dissolved inorganic carbon (DIC) and alkalinity concentrations of the ocean by more than 100 µM, confirming that carbon burial fluxes were a dynamic, interactive component of the glacial cycles that significantly modified the size of the active carbon pool. Our results also suggest that geological sources and sinks were significantly unbalanced during the late Holocene, leading to a slow net removal flux on the order of 0.1 PgC yr−1 prior to the rapid input of carbon during the industrial period.


2016 ◽  
Vol 22 (8) ◽  
pp. 2688-2701 ◽  
Author(s):  
Jinzhi Ding ◽  
Fei Li ◽  
Guibiao Yang ◽  
Leiyi Chen ◽  
Beibei Zhang ◽  
...  

2004 ◽  
Vol 64 (3) ◽  
pp. 341-360 ◽  
Author(s):  
Abha Chhabra ◽  
V. K. Dadhwal
Keyword(s):  

2016 ◽  
Author(s):  
C. Smeaton ◽  
W. E. N. Austin ◽  
A. L. Davies ◽  
A. Baltzer ◽  
R. E. Abell ◽  
...  

2020 ◽  
Vol 221 ◽  
pp. 103783 ◽  
Author(s):  
Mehdia Asma Keraghel ◽  
Ferial Louanchi ◽  
Mohamed Zerrouki ◽  
Malik Aït Kaci ◽  
Nadira Aït-Ameur ◽  
...  

2018 ◽  
Vol 14 (12) ◽  
pp. 1961-1976 ◽  
Author(s):  
Augustin Kessler ◽  
Eirik Vinje Galaasen ◽  
Ulysses Silas Ninnemann ◽  
Jerry Tjiputra

Abstract. During the Last Interglacial period (LIG), the transition from 125 to 115 ka provides a case study for assessing the response of the carbon system to different levels of high-latitude warmth. Elucidating the mechanisms responsible for interglacial changes in the ocean carbon inventory provides constraints on natural carbon sources and sinks and their climate sensitivity, which are essential for assessing potential future changes. However, the mechanisms leading to modifications of the ocean's carbon budget during this period remain poorly documented and not well understood. Using a state-of-the-art Earth system model, we analyze the changes in oceanic carbon dynamics by comparing two quasi-equilibrium states: the early, warm Eemian (125 ka) versus the cooler, late Eemian (115 ka). We find considerably reduced ocean dissolved inorganic carbon (DIC; −314.1 PgC) storage in the warm climate state at 125 ka as compared to 115 ka, mainly attributed to changes in the biological pump and ocean DIC disequilibrium components. The biological pump is mainly driven by changes in interior ocean ventilation timescales, but the processes controlling the changes in ocean DIC disequilibrium remain difficult to assess and seem more regionally affected. While the Atlantic bottom-water disequilibrium is affected by the organization of sea-ice-induced southern-sourced water (SSW) and northern-sourced water (NSW), the upper-layer changes remain unexplained. Due to its large size, the Pacific accounts for the largest DIC loss, approximately 57 % of the global decrease. This is largely associated with better ventilation of the interior Pacific water mass. However, the largest simulated DIC differences per unit volume are found in the SSWs of the Atlantic. Our study shows that the deep-water geometry and ventilation in the South Atlantic are altered between the two climate states where warmer climatic conditions cause SSWs to retreat southward and NSWs to extent further south. This process is mainly responsible for the simulated DIC reduction by restricting the extent of DIC-rich SSW, thereby reducing the storage of biological remineralized carbon at depth.


FLORESTA ◽  
2014 ◽  
Vol 44 (4) ◽  
pp. 697
Author(s):  
Henrique Luis Godinho Cassol ◽  
Dejanira Luderitz Saldanha ◽  
Tatiana Mora Kuplich

O trabalho teve como objetivo inventariar o carbono de um fragmento de Floresta Ombrófila Mista utilizando dados provenientes de sensores de média resolução espacial. Uma cena dos sensores ASTER, LISS e TM foi empregada na obtenção dos dados radiométricos (espectrais), e os dados de biomassa e carbono (biofísicos) foram oriundos de parcelas de inventário florestal contínuo em São João do Triunfo, PR. A metodologia consistiu em estabelecer a relação empírica entre esses conjuntos de dados por meio de equações lineares de regressão. À exceção do sensor TM, que apresentou resultado insatisfatório, o uso dos dados oriundos dos sensores LISS e ASTER foi adequado para se inventariar o carbono florestal por detecção remota, com erros inferiores aos estabelecidos nas campanhas de inventários tradicionais (α < 0,05).Palavras-chave: Estoque de carbono; sensoriamento remoto; ASTER; TM; LISS. AbstractCarbon inventory in a fragment of Mixed Ombrophylous Forest by remote sensing. The research aims to make inventory of carbon of a fragment of Araucaria Forest using data from medium spatial resolution sensors. Satellite data from ASTER, TM and LISS were used to obtain the radiometric data. The above ground biomass and carbon data (biophysical data) were derived from the continuous forest inventory located in São João do Triunfo, PR. The methodology consisted of establishing the empirical relationship between spectral and biophysical data sets using linear regression. Except for the TM data, which showed unsatisfactory results, the use of ASTER and LISS satellite data was suited to forest carbon inventory by remote sensing, with errors lower than those set in traditional inventory campaigns (α < 0,05).Keywords: Carbon stock; remote sensing; ASTER; TM; LISS.


2019 ◽  
Vol 21 (15) ◽  
pp. 3994-4013 ◽  
Author(s):  
P. Tomkins ◽  
T. E. Müller

Propositioning carbon to be seen a valuable resource, pathways towards establishing anthropogenic carbon cycles are outlined based on systematic analysis of the carbon inventory and fluxes throughout the different environmental compartments on earth.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 815 ◽  
Author(s):  
Shanshan Du ◽  
Liangyun Liu ◽  
Xinjie Liu ◽  
Xinwei Zhang ◽  
Xianlian Gao ◽  
...  

The global monitoring of solar-induced chlorophyll fluorescence (SIF) using satellite-based observations provides a new way of monitoring the status of terrestrial vegetation photosynthesis on a global scale. Several global SIF products that make use of atmospheric satellite data have been successfully developed in recent decades. The Terrestrial Ecosystem Carbon Inventory Satellite (TECIS-1), the first Chinese terrestrial ecosystem carbon inventory satellite, which is due to be launched in 2021, will carry an imaging spectrometer specifically designed for SIF monitoring. Here, we use an extensive set of simulated data derived from the MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) and Soil Canopy Observation Photosynthesis and Energy (SCOPE) models to evaluate and optimize the specifications of the SIF Imaging Spectrometer (SIFIS) onboard TECIS for accurate SIF retrievals. The wide spectral range of 670−780 nm was recommended to obtain the SIF at both the red and far-red bands. The results illustrate that the combination of a spectral resolution (SR) of 0.1 nm and a signal-to-noise ratio (SNR) of 127 performs better than an SR of 0.3 nm and SNR of 322 or an SR of 0.5 nm and SNR of 472 nm. The resulting SIF retrievals have a root-mean-squared (RMS) diff* value of 0.15 mW m−2 sr−1 nm−1 at the far-red band and 0.43 mW m−2 sr−1 nm−1 at the red band. This compares with 0.20 and 0.26 mW m−2 sr−1 nm−1 at the far-red band and 0.62 and 1.30 mW m−2 sr−1 nm−1 at the red band for the other two configurations described above. Given an SR of 0.3 nm, the increase in the SNR can also improve the SIF retrieval at both bands. If the SNR is improved to 450, the RMS diff* will be 0.17 mW m−2 sr−1 nm−1 at the far-red band and 0.47 mW m−2 sr−1 nm−1 at the red band. Therefore, the SIFIS onboard TECIS-1 will provide another set of observations dedicated to monitoring SIF at the global scale, which will benefit investigations of terrestrial vegetation photosynthesis from space.


Sign in / Sign up

Export Citation Format

Share Document