scholarly journals Oocyte quality and aging

Author(s):  
Ali Reza Eftekhari Moghadam ◽  
Mahin Taheri Moghadam ◽  
Masoud Hemadi ◽  
Ghasem Saki
Keyword(s):  
2021 ◽  
Vol 22 (10) ◽  
pp. 5327
Author(s):  
Lianguang Xu ◽  
Muhammad Idrees ◽  
Myeong-Don Joo ◽  
Tabinda Sidrat ◽  
Yiran Wei ◽  
...  

Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and β-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of β-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts’ development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/β-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Indu Sharma ◽  
Priti Kumari ◽  
Anuradha Sharma ◽  
Subhas Chandra Saha

Abstract Background COVID-19 is the most recent zoonotic outbreak of coronaviruses. Mostly, it invades the cells of the respiratory system by binding to the receptor angiotensin-converting enzyme 2 (ACE2) which is also present in other organs like the kidney, testis, ovaries, breast, heart, and intestine, rendering them prone to be infected. The reproductive potential is a must for the sustenance of any species and it is our prime duty to safeguard the reproductive system of the present generation from such a deadly virus. The previously reported coronaviruses like severe acute respiratory syndrome coronavirus (SARS-CoV) had a detrimental impact on reproductive organs. There is a dearth of sufficient research to provide substantial evidence for the harmful effects of this novel virus on the reproductive system. Hence, our review compiles the knowledge available until now to boost research in this regard and to take the necessary steps in time. Main body of abstract Here we tried to compile all the data available on the effect of SARS-CoV-2 on the reproductive system as well as vertical transmission of the virus. All related articles published from February to August 2020 were reviewed and thoroughly analyzed. SARS-CoV-2 has been found to affect the sperm concentration and motility, thus degrading the fertility of males. In females, it is suspected that this virus affects the oocyte quality and ovarian function, resulting in infertility or miscarriage. Traces of SARS-CoV-2 virus have also been found in the breast milk of the infected mothers and the semen of infected males. Vertical transmission of SARS-CoV-2 has also been reported in some cases. Conclusion Based on the literature review, SARS-CoV-2 seems to have the potential of affecting both male and female reproductive tracts. This review brings together the findings and observations made in the area of reproductive health during the current pandemic. The reproductive system of the young population is preordained for subsequent disorders, infertility, reduced sperm count, and motility. Therefore, the research and medical practices should focus on possible vulnerability being posed by SARS-CoV-2 to the gametes and future generations. We, hereby, recommend close monitoring of young and pregnant COVID-19 patients concerning reproductive health with utmost priority.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xinyue Zhang ◽  
Ting Feng ◽  
Jihong Yang ◽  
Yingying Hao ◽  
Suying Li ◽  
...  

Abstract Background Ovarian responsiveness to controlled ovarian stimulation is essential for a successful clinical outcome in assisted reproductive technology (ART) cycles. We aimed to find a suitable new ovulation stimulation protocol for poor ovarian response (POR) patients over 40 years old. Methods A retrospective analysis of 488 ART cycles was evaluated from January 2015 to June 2019. Comparisons were made between the flexible short protocol (FSP), routine short protocol and mild stimulation protocol. Results Compared with the routine short protocol, the FSP delayed the gonadotropin start time and reduced the total gonadotropin dose per stimulation cycle. At the same time, compared with the mild stimulation protocol, the FSP improved oocyte quality and embryo quality and improved embryo implantation potential after transfer. Furthermore, the use of the FSP reduced the probability of premature ovulation, as it inhibited the premature luteinizing hormone (LH) surge to a certain extent. Conclusions The FSP yielded better outcomes than other protocols for patients with POR over 40 years old in our study. However, further prospective studies are needed to provide more substantial evidence and to determine whether the FSP can be successful for both patients over 40 years group and younger POR patients.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 519
Author(s):  
Hyemin Min ◽  
Mijin Lee ◽  
Kyoung Sang Cho ◽  
Hyunjung Jade Lim ◽  
Yhong-Hee Shim

Aging is associated with a decline in the quality of biological functions. Among the aging processes, reproductive aging is a critical process because of its intergenerational effects. However, the mechanisms underlying reproductive aging remain largely unknown. Female reproductive aging is the primary reason for limited fertility in mammals. Therefore, we attempted to investigate a modulator that can control female reproductive aging using a Caenorhabditis elegans model. In the present study, we examined the role of nicotinamide (NAM) in oocyte quality and offspring development. The levels of reactive oxygen species (ROS) and oxidative stress responses in aged oocytes, embryonic lethality, and developmental growth of the offspring were examined with maternal NAM supplementation. Supplementation with NAM improved oocyte quality, decreased embryonic lethality, and promoted germ cell apoptosis. Furthermore, NAM supplementation in aged mothers reduced ROS accumulation and improved mitochondrial function in oocytes. Consequently, the developmental growth and motility of offspring were improved. These findings suggest that NAM supplementation improves the health of the offspring produced by aged mothers through improved mitochondrial function. Taken together, our results imply that NAM supplementation in the aged mother improves oocyte quality and protects offspring by modulating mitochondrial function.


2021 ◽  
Vol 15 ◽  
pp. 263349412110235
Author(s):  
Cristina Rodríguez-Varela ◽  
Sonia Herraiz ◽  
Elena Labarta

Poor ovarian responders exhibit a quantitative reduction in their follicular pool, and most cases are also associated with poor oocyte quality due to patient’s age, which leads to impaired in vitro fertilisation outcomes. In particular, poor oocyte quality has been related to mitochondrial dysfunction and/or low mitochondrial count as these organelles are crucial in many essential oocyte processes. Therefore, mitochondrial enrichment has been proposed as a potential therapy option in infertile patients to improve oocyte quality and subsequent in vitro fertilisation outcomes. Nowadays, different options are available for mitochondrial enrichment treatments that are encompassed in two main approaches: heterologous and autologous. In the heterologous approach, mitochondria come from an external source, which is an oocyte donor. These techniques include transferring either a portion of the donor’s oocyte cytoplasm to the recipient oocyte or nuclear material from the patient to the donor’s oocyte. In any case, this approach entails many ethical and safety concerns that mainly arise from the uncertain degree of mitochondrial heteroplasmy deriving from it. Thus the autologous approach is considered a suitable potential tool to improve oocyte quality by overcoming the heteroplasmy issue. Autologous mitochondrial transfer, however, has not yielded as many beneficial outcomes as initially expected. Proposed mitochondrial autologous sources include immature oocytes, granulosa cells, germline stem cells, and adipose-derived stem cells. Presently, it would seem that these autologous techniques do not improve clinical outcomes in human infertile patients. However, further trials still need to be performed to confirm these results. Besides these two main categories, new strategies have arisen for oocyte rejuvenation by improving patient’s own mitochondrial function and avoiding the unknown consequences of third-party genetic material. This is the case of antioxidants, which may enhance mitochondrial activity by counteracting and/or preventing oxidative stress damage. Among others, coenzyme-Q10 and melatonin have shown promising results in low-prognosis infertile patients, although further randomised clinical trials are still necessary.


2019 ◽  
pp. 498-507
Author(s):  
Laura A. Favetta ◽  
Angela C. Saleh ◽  
Reem Sabry

Sign in / Sign up

Export Citation Format

Share Document